Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 11(8): 4176-4190, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923035

RESUMO

We have developed an analyser-based phase contrast X-ray imaging technique to measure the mean length scale of pores or particles that cannot be resolved directly by the system. By combining attenuation, phase and ultra-small angle X-ray scattering information, the technique was capable of measuring differences in airway dimension between lungs of healthy mice and those with mild and severe emphysema. Our measurements of airway dimensions from 2D images showed a 1:1 relationship to the actual airway dimensions measured using micro-CT. Using 80 images, the sensitivity and specificity were measured to be 0.80 and 0.89, respectively, with the area under the ROC curve close to ideal at 0.96. Reducing the number of images to 11 slightly decreased the sensitivity to 0.75 and the ROC curve area to 0.90, whilst the specificity remained high at 0.89.

2.
Opt Express ; 28(5): 7080-7094, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225943

RESUMO

This work demonstrates the use of a scientific-CMOS (sCMOS) energy-integrating detector as a photon-counting detector, thereby eliminating dark current and read-out noise issues, that simultaneously provides both energy resolution and sub-pixel spatial resolution for X-ray imaging. These capabilities are obtained by analyzing visible light photon clouds that result when X-ray photons produce fluorescence from a scintillator in front of the visible light sensor. Using low-fluence monochromatic X-ray projections to avoid overlapping photon clouds, the centroid of individual X-ray photon interactions was identified. This enabled a tripling of the spatial resolution of the detector to 6.71 ± 0.04 µm. By calculating the total charge deposited by this interaction, an energy resolution of 61.2 ± 0.1% at 17 keV was obtained. When combined with propagation-based phase contrast imaging and phase retrieval, a signal-to-noise ratio of up to 15 ± 3 was achieved for an X-ray fluence of less than 3 photons/mm2.

3.
Arch Dis Child Fetal Neonatal Ed ; 103(2): F112-F119, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29054974

RESUMO

BACKGROUND: Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. METHODS: We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. HYPOTHESIS: Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. RESULTS: The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. CONCLUSION: Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth.


Assuntos
Laringe/fisiologia , Pulmão/fisiologia , Ventilação não Invasiva , Animais , Animais Recém-Nascidos , Epiglote/diagnóstico por imagem , Epiglote/fisiologia , Glote/diagnóstico por imagem , Glote/fisiologia , Laringe/diagnóstico por imagem , Coelhos
4.
Sci Rep ; 7(1): 15953, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162913

RESUMO

Phase-contrast X-ray imaging can improve the visibility of weakly absorbing objects (e.g. soft tissues) by an order of magnitude or more compared to conventional radiographs. Combining phase retrieval with computed tomography (CT) can increase the signal-to-noise ratio (SNR) by up to two orders of magnitude over conventional CT at the same radiation dose, without loss of image quality. Our experiments reveal that as the radiation dose decreases, the relative improvement in SNR increases. We show that this enhancement can be traded for a reduction in dose greater than the square of the gain in SNR. Upon reducing the dose 300 fold, the phase-retrieved SNR was still up to 9.6 ± 0.2 times larger than the absorption contrast data with spatial resolution in the tens of microns. We show that this theoretically reveals the potential for dose reduction factors in the tens of thousands without loss in image quality, which would have a profound impact on medical and industrial imaging applications.


Assuntos
Tomografia Computadorizada por Raios X , Animais , Animais Recém-Nascidos , Relação Dose-Resposta à Radiação , Pulmão/diagnóstico por imagem , Coelhos , Razão Sinal-Ruído , Raios X
5.
Phys Med Biol ; 60(18): 7259-76, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26348552

RESUMO

Respiratory health is directly linked to the structural and mechanical properties of the airways of the lungs. For studying respiratory development and pathology, the ability to quantitatively measure airway dimensions and changes in their size during respiration is highly desirable. Real-time imaging of the terminal airways with sufficient contrast and resolution during respiration is currently not possible. Herein we reveal a simple method for measuring lung airway dimensions in small animals during respiration from a single propagation-based phase contrast x-ray image, thereby requiring minimal radiation. This modality renders the lungs visible as a speckled intensity pattern. In the near-field regime, the size of the speckles is directly correlated with that of the dominant length scale of the airways. We demonstrate that Fourier space quantification of the speckle texture can be used to statistically measure regional airway dimensions at the alveolar scale, with measurement precision finer than the spatial resolution of the imaging system. Using this technique we discovered striking differences in developmental maturity in the lungs of rabbit kittens at birth.


Assuntos
Medidas de Volume Pulmonar/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Animais Recém-Nascidos , Feminino , Coelhos , Doses de Radiação
6.
Biomed Opt Express ; 5(11): 4024-38, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25426328

RESUMO

Herein a propagation-based phase contrast x-ray imaging technique for measuring particle size and number is presented. This is achieved with an algorithm that utilizes the Fourier space signature of the speckle pattern associated with the images of particles. We validate this algorithm using soda-lime glass particles, demonstrating its effectiveness on random and non-randomly packed particles. This technique is then applied to characterise lung alveoli, which are difficult to measure dynamically in vivo with current imaging modalities due to inadequate temporal resolution and/or depth of penetration and field-of-view. We obtain an important result in that our algorithm is able to measure changes in alveolar size on the micron scale during ventilation and shows the presence of alveolar recruitment/de-recruitment in newborn rabbit kittens. This technique will be useful for ventilation management and lung diagnostic procedures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...