Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(10): e0224959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031384

RESUMO

Heat poses an urgent threat to public health in cities, as the urban heat island (UHI) effect can amplify exposures, contributing to high heat-related mortality and morbidity. Urban trees have the potential to mitigate heat by providing substantial cooling, as well as co-benefits such as reductions in energy consumption. The City of Boston has attempted to expand its urban canopy, yet maintenance costs and high tree mortality have hindered successful canopy expansion. Here, we present an interactive web application called Right Place, Right Tree-Boston that aims to support informed decision-making for planting new trees. To highlight priority regions for canopy expansion, we developed a Boston-specific Heat Vulnerability Index (HVI) and present this alongside maps of summer daytime land surface temperatures. We also provide information about tree pests and diseases, suitability of species for various conditions, land ownership, maintenance tips, and alternatives to tree planting. This web application is designed to support decision-making at multiple spatial scales, to assist city officials as well as residents who are interested in expanding or maintaining Boston's urban forest.


Assuntos
Conservação de Recursos Energéticos/métodos , Árvores/crescimento & desenvolvimento , Agricultura , Boston , Tomada de Decisões , Temperatura Alta , Reforma Urbana
2.
Metab Eng ; 62: 207-220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961296

RESUMO

Coupling recent advancements in genetic engineering of diverse microbes and gas-driven fermentation provides a path towards sustainable commodity chemical production. Cupriavidus necator H16 is a suitable species for this task because it effectively utilizes H2 and CO2 and is genetically tractable. Here, we demonstrate the versatility of C. necator for chemical production by engineering it to produce three products from CO2 under lithotrophic conditions: sucrose, polyhydroxyalkanoates (PHAs), and lipochitooligosaccharides (LCOs). We engineered sucrose production in a co-culture system with heterotrophic growth 30 times that of WT C. necator. We engineered PHA production (20-60% DCW) and selectively altered product composition by combining different thioesterases and phaCs to produce copolymers directly from CO2. And, we engineered C. necator to convert CO2 into the LCO, a plant growth enhancer, with titers of ~1.4 mg/L-equivalent to yields in its native source, Bradyrhizobium. We applied the LCOs to germinating seeds as well as corn plants and observed increases in a variety of growth parameters. Taken together, these results expand our understanding of how a gas-utilizing bacteria can promote sustainable production.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Dióxido de Carbono , Cupriavidus necator/genética , Fermentação , Processos Heterotróficos
3.
PLoS One ; 9(10): e109126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25286362

RESUMO

Climate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management practices to facilitate climate adaptation for sustainable crop production.


Assuntos
Camellia sinensis/química , Comportamento de Escolha , Mudança Climática , Conhecimento , Sensação/fisiologia , Clima Tropical , Agricultura , Antioxidantes/análise , Bebidas/economia , Camellia sinensis/crescimento & desenvolvimento , Catequina/análise , China , Comércio , Polifenóis/análise , Chuva , Reprodutibilidade dos Testes , Xantinas/análise
4.
AoB Plants ; 6(0)2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790117

RESUMO

Extreme shifts in water availability linked to global climate change are impacting crops worldwide. The present study examines the direct and interactive effects of water availability and pest pressures on tea (Camellia sinensis; Theaceae) growth and functional quality. Manipulative greenhouse experiments were used to measure the effects of variable water availability and pest pressures simulated by jasmonic acid (JA) on tea leaf growth and secondary metabolites that determine tea quality. Water treatments were simulated to replicate ideal tea growing conditions and extreme precipitation events in tropical southwestern China, a major centre of tea production. Results show that higher water availability and JA significantly increased the growth of new leaves while their interactive effect was not significant. The effect of water availability and JA on tea quality varied with individual secondary metabolites. Higher water availability significantly increased total methylxanthine concentrations of tea leaves but there was no significant effect of JA treatments or the interaction of water and JA. Water availability, JA treatments or their interactive effects had no effect on the concentrations of epigallocatechin 3-gallate. In contrast, increased water availability resulted in significantly lower concentrations of epicatechin 3-gallate but the effect of JA and the interactive effects of water and JA were not significant. Lastly, higher water availability resulted in significantly higher total phenolic concentrations but there was no significant impact of JA and their interaction. These findings point to the fascinating dynamics of climate change effects on tea plants with offsetting interactions between precipitation and pest pressures within agro-ecosystems, and the need for future climate studies to examine interactive biotic and abiotic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...