Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 11(5): 2806-2817, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499962

RESUMO

Today, 3D imaging techniques are emerging, not only as a new tool in early drug discovery but also for the development of potential therapeutics to treat disease. Particular efforts are directed towards in vivo physiology to avoid perturbing the system under study. Here, we assess non-invasive 3D lensless imaging and its impact on cell behavior and analysis. We test our concept on various bio-applications and present here the first results. The microscopy platform based on in-holography provides large fields of view images (several mm2 compared to several hundred µm2) with sub-micrometer spatial resolution. 3D image reconstructions are achieved using back propagation functions post-processing.

2.
J Synchrotron Radiat ; 15(Pt 2): 134-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18296778

RESUMO

The recent development of short-wavelength optics (X/EUV, synchrotrons) requires improved metrology techniques in terms of accuracy and curvature dynamic range. In this article a stitching Shack-Hartmann head dedicated to be mounted on translation stages for the characterization of X-ray mirrors is presented. The principle of the instrument is described and experimental results for an X-ray toroidal mirror are presented. Submicroradian performances can be achieved and systematic comparison with a classical long-trace profiler is presented. The accuracy and wide dynamic range of the Shack-Hartmann long-trace-profiler head allow two-dimensional characterizations of surface figure and curvature with a submillimeter spatial resolution.

3.
Opt Lett ; 31(2): 199-201, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16441029

RESUMO

We present what we believe to be the first automatic alignment of a synchrotron beamline by the Hartmann technique. Experiments were performed, in the soft-x-ray range (E=3 keV, lambda=0.414 nm), by using a four-actuator Kirkpatrick-Baez (KB) active optic. A system imaging the KB focal spot and a soft-x-ray Hartmann wavefront sensor were used alternatively to control the KB optic. The beam corrected with the help of the imaging system was used to calibrate the wavefront sensor. With both closed loops, we focused the beam into a 6.8 microm x 9 microm FWHM focal spot.

4.
Opt Lett ; 28(17): 1534-6, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12956370

RESUMO

We report, for the first time to our knowledge, experimental demonstration of wave-front analysis via the Hartmann technique in the extreme ultraviolet range. The reference wave front needed to calibrate the sensor was generated by spatially filtering a focused undulator beam with 1.7- and 0.6-microm-diameter pinholes. To fully characterize the sensor, accuracy and sensitivity measurements were performed. The incident beam's wavelength was varied from 7 to 25 nm. Measurements of accuracy better than lambdaEUV/120 (0.11 nm) were obtained at lambdaEUV = 13.4 nm. The aberrations introduced by an additional thin mirror, as well as wave front of the spatially unfiltered incident beam, were also measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA