Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256940

RESUMO

Calixarene 0118 (OTX008) and chrysin (CHR) are promising molecules for the treatment of fibrosis and diabetes complications but require an effective delivery system to overcome their low solubility and bioavailability. Sulfobutylated ß-cyclodextrin (SBECD) was evaluated for its ability to increase the solubility of CHR by forming a ternary complex with OTX008. The resulting increase in solubility and the mechanisms of complex formation were identified through phase-solubility studies, while dynamic light-scattering assessed the molecular associations within the CHR-OTX008-SBECD system. Nuclear magnetic resonance, differential scanning calorimetry, and computational studies elucidated the interactions at the molecular level, and cellular assays confirmed the system's biocompatibility. Combining SBECD with OTX008 enhances CHR solubility more than using SBECD alone by forming water-soluble molecular associates in a ternary complex. This aids in the solubilization and delivery of CHR and OTX008. Structural investigations revealed non-covalent interactions essential to complex formation, which showed no cytotoxicity in hyperglycemic in vitro conditions. A new ternary complex has been formulated to deliver promising antifibrotic agents for diabetic complications, featuring OTX008 as a key structural and pharmacological component.

2.
Pharmaceutics ; 15(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140042

RESUMO

The aim of this study was to formulate and characterize CK2 inhibitor-loaded alginate microbeads via the polymerization method. Different excipients were used in the formulation to improve the penetration of an active agent and to stabilize our preparations. Transcutol® HP was added to the drug-sodium alginate mixture and polyvinylpyrrolidone (PVP) was added to the hardening solution, alone and in combination. To characterize the formulations, mean particle size, scanning electron microscopy analysis, encapsulation efficiency, swelling behavior, an enzymatic stability test and an in vitro dissolution study were performed. The cell viability assay and permeability test were also carried out on the Caco-2 cell line. The anti-oxidant and anti-inflammatory effects of the formulations were finally evaluated. The combination of Transcutol® HP and PVP in the formulation of sodium alginate microbeads could improve the stability, in vitro permeability, anti-oxidant and anti-inflammatory effects of the CK2 inhibitor.

3.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298882

RESUMO

Nasal drug delivery has been a focus of scientific interest for decades. A number of drug delivery systems and devices are available and have been highly successful in providing better and more comfortable therapy. The benefits of nasal drug delivery are not in question. The nasal surface provides an excellent context for the targeted delivery of active substances. In addition to the large nasal surface area and intensive absorption, the active substances delivered through the nose overcome the blood-brain barrier and can be delivered directly to the central nervous system. Formulations for nasal administration are typically solutions or liquid dispersed systems such as emulsions or suspensions. Formulation techniques for nanostructures have recently undergone intensive development. Solid-phase heterogeneous dispersed systems represent a new direction in pharmaceutical formulations. The wide range of possible examples and the variety of excipients allow for the delivery of a wide range of active ingredients. The aim of our experimental work was to develop a solid drug delivery system that possesses all of the above-mentioned advantageous properties. In developing solid nanosystems, we not only exploited the advantages of size but also the adhesive and penetration-enhancing properties of excipients. During formulation, several amphiphilic compounds with adhesion properties and penetration enhancing effects were incorporated. We used chlorpromazine (CPZ), which is mainly used in the treatment of psychotic disorders such as schizophrenia and bipolar disorder. Chlorpromazine has been previously investigated by our team in other projects. With the availability of previous methods, the analytical characterization of the drug was carried out effectively. Due to the frequent and severe side effects of the drug, the need for therapeutic dose reduction is indisputable. In this series of experiments, we succeeded in constructing drug delivery systems. Finely divided Na nanoparticles were formed using a Büchi B90 nanospray dryer. An important step in the development of the drug carrier was the selection of suitable inert carrier compounds. Particle size determination and particle size distribution analysis were performed to characterize the prepared nanostructures. As safety is the most important aspect of any drug formulation, all components and systems were tested with different biocompatibility assays. The tests performed demonstrated the safe applicability of our systems. The bioavailability of chlorpromazine was studied as a function of the ratio of the active ingredient administered nasally and intravenously. As described above, most nasal formulations are liquids, but our system is solid, so there is currently no tool available to accurately target this system. As a supplement of the project, a nasal dosing device was developed, corresponding to the anatomical structure; a prototype of the device was made using 3D FDM technology. Our results lay the foundation for the design and industrial scaling of a new approach to the design and production of a high-bioavailability nasal medicinal product.


Assuntos
Clorpromazina , Nanopartículas , Excipientes/química , Administração Intranasal , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Nanopartículas/química , Tamanho da Partícula
4.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050371

RESUMO

Solid dispersions are typically binary systems with a hydrophilic matrix polymer and a lipophilic active substance. During formulation, the drug undergoes a crystalline to amorphous phase transition, which leads to a supersaturated solution providing enhanced bioavailability. The interaction of the active substance and the polymer is unique and influences the level of supersaturation. We aimed to investigate the relationship between low molecular weight polyethylene glycol derivates PEG 1000, 1500, and 2000 and ketoprofen regarding the effect of molecular weight. The physicochemical properties of solid dispersions prepared with hot melt homogenization and their respective physical mixtures were investigated with Fourier transform infrared spectroscopy, powder X-ray diffraction and scanning electron microscopy techniques. A phase solubility study was carried out in hydrochloric acid media which showed no difference between the three polymers, but the dissolution curves differed considerably. PEG 1000 had higher percentage of released drug than PEG 1500 and 2000, which had similar results. These results indicate that when multiple low molecular weight PEGs are suitable as matrix polymers of solid dispersions, the molecular weight has only limited impact on physicochemical characteristics and interactions and further investigation is needed to select the most applicable candidate.

5.
Pharmaceutics ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38258047

RESUMO

BGP-15 is an active ingredient with many advantages, e.g., beneficial cardiovascular and anti-inflammatory effects. The transdermal administration of BGP-15 has great potential, which has not been investigated yet, despite the fact that it is a non-invasive and safe form of treatment. The aim of our study was to formulate transdermal patches containing BGP-15 and optimize the production with the Box-Behnken design of experiment. The most optimal formulation was further combined with penetration enhancers to improve bioavailability of the active ingredient, and the in vitro drug release and in vitro permeation of BGP-15 from the patches were investigated. FTIR spectra of BGP-15, the formulations and the components were also studied. The most optimal formulation based on the tested parameters was dried for 24 h, with 67% polyvinyl alcohol (PVA) content and low ethanol content. The selected penetration enhancer excipients were not cytotoxic on HaCaT cells. The FTIR measurements and SEM photography proved the compatibility of the active substance and the vehicle; BGP-15 was present in the polymer matrix in dissolved form. The bioavailability of BGP-15 was most significantly enhanced by the combination of Transcutol and Labrasol. The in vitro permeation study confirmed that the formulated patches successfully enabled the transdermal administration of BGP-15.

6.
Pharmaceutics ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258057

RESUMO

The development of oral insulin drug delivery systems is still an ongoing challenge for pharmaceutical technology researchers, as the formulation process has to overcome a number of obstacles due to the adverse characteristics of peptides. The aim of this study was to formulate different sodium-alginate microparticles as a possible method for oral insulin administration. In our previous studies, the method has been successfully optimized using a small model peptide. The incorporation of insulin into alginate carriers containing nonionic surfactants has not been described yet. In order to enhance the absorption of insulin through biological barriers, Labrasol ALF and Labrafil M 2125 CS were selected as permeation-enhancing excipients. They were applied at a concentration of 0.10% (v/v%), along with various combinations of the two, to increase oral bioavailability. Encapsulation efficiency showed sufficient drug incorporation, as it resulted in over 80% in each composition. In vitro dissolution and enzymatic stability test results proved that, as a pH-responsive polymer, alginate bead swelling and drug release occur at higher pH, thus protecting insulin against the harsh environment of the gastrointestinal tract. The remaining insulin content was 66% due to SIF degradation after 120 min. Permeability experiments revealed the impact of permeation enhancers and natural polymers on drug absorption, as they enhanced drug transport significantly through Caco-2 cells in the case of alginate microparticle formulations, as opposed to the control insulin solution. These results suggest that these formulations are able to improve the oral bioavailability of insulin.

7.
Biomolecules ; 12(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35883488

RESUMO

The investigation of the usability of solid insoluble ß-cyclodextrin polymers (ßCDP) in micro-sized, controlled drug delivery systems has only recently attracted interest. Our aim was to form complexes with poorly soluble active pharmaceutical ingredients (APIs) with two types of ßCDP for drug delivery applications. Solid insoluble cyclodextrin polymer of irregular shape (ßCDPIS) and cyclodextrin microbeads (ßCDPB) were used in the experiments. Morphology, surface area, size distribution and swelling capacity of carriers were investigated. We created complexes with two APIs, curcumin and estradiol, and applied powder X-ray diffraction, FTIR and thermal analysis (TGA/DSC) to prove the complexation. Finally, the dissolution, biocompatibility and permeation of APIs on Caco-2 cells were investigated. The size of the beads was larger than 100 µm, their shape was spherical and surfaces were smooth; while the ßCDPIS particles were around 4 µm with irregular shape and surface. None of the polymers showed any cytotoxic effect on Caco-2 cells. Both carriers were able to extract curcumin and estradiol from aqueous solutions, and the dissolution test showed prolonged estradiol release. Caco-2 permeability tests were in accordance with the complexation abilities and dissolution of the complexes. This study offers useful data for further pharmaceutical applications of insoluble cyclodextrin polymers.


Assuntos
Curcumina , Ciclodextrinas , Células CACO-2 , Celulose , Curcumina/farmacologia , Portadores de Fármacos , Estradiol , Humanos , Microesferas , Polímeros , Solubilidade
8.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566837

RESUMO

Microencapsulation and coating are preferred methods to increase the viability of the probiotic strains. The effect of microencapsulation technologies and materials used as microcapsule cores on viability is being investigated during development. In the present study, chitosan-coated and Eudragit L100-55-coated alginate microspheres were produced to encapsulate Lactobacillus plantarum probiotic bacteria. After the heat loading and simulated gastrointestinal juice dissolution study, the differences in viability were compared based on the CFU/mL values of the samples. The kinetics of the bacterial release and the ratio of the released live/dead cells of Lactobacillus plantarum were examined by flow cytometry. In all cases, we found that the CFU value for the chitosan-coated samples was virtually zero. The ratio of live/dead cells in the 120 min samples was significantly reduced to less than 20% for chitosan, while it was nearly 90% in the uncoated and Eudragit L100-55-coated samples. In the case of chitosan, based on some published MIC values and the amount of chitosan coating determined in the present study, we concluded the reason for our results. It was the first time to determine the amount of the released chitosan coat of the dried microcapsule, which reached the MIC value during the dissolution studies.

9.
Pharmaceutics ; 14(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35214082

RESUMO

Gastroretentive systems may overcome problems associated with incomplete drug absorption by localized release of the API in the stomach. Low-density drug delivery systems can float in the gastric content and improve the bioavailability of small molecules. The current publication presents verapamil-HCl-containing solid foam prepared by continuous manufacturing. Production runs were validated, and the foam structure was characterized by micro-CT scans and SEM. Dissolution properties, texture changes during dissolution, and floating forces were analyzed. An optimized formulation was chosen and given orally to Beagle dogs to determine the pharmacokinetic parameters of the solid foam capsules. As a result, a 12.5 m/m% stearic acid content was found to be the most effective to reduce the apparent density of capsules. Drug release can be described by the first-order model, where 70% of verapamil dissolved after 10 h from the optimized formulation. The texture analysis proved that the structures of the solid foams are resistant. Additionally, the floating forces of the samples remained constant during their dissolution in acidic media. An in vivo study confirmed the prolonged release of the API, and gastroscopic images verified the retention of the capsule in the stomach.

10.
Pharmaceutics ; 13(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683864

RESUMO

In recent years, the application of solid foams has become widespread. Solid foams are not only used in the aerospace field but also in everyday life. Although foams are promising dosage forms in the pharmaceutical industry, their usage is not prevalent due to decreased stability of the solid foam structure. These special dosage forms can result in increased bioavailability of drugs. Low-density floating formulations can also increase the gastric residence time of drugs; therefore, drug release will be sustained. Our aim was to produce a stable floating formula by foaming. Matrix components, PEG 4000 and stearic acid type 50, were selected with the criteria of low gastric irritation, a melting range below 70 °C, and well-known use in oral drug formulations. This matrix was melted at 54 °C in order to produce a dispersion of active substance and was foamed by different gases at atmospheric pressure using an ultrasonic homogenizer. The density of the molded solid foam was studied by the pycnometer method, and its structure was investigated by SEM and micro-CT. The prolonged drug release and mucoadhesive properties were proved in a pH 1.2 buffer. According to our experiments, a stable foam could be produced by rapid homogenization (less than 1 min) without any surfactant material.

11.
AAPS PharmSciTech ; 22(5): 187, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155595

RESUMO

Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 µm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.


Assuntos
Sulfato de Bário/síntese química , Sulfato de Bário/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Absorção Gastrointestinal/efeitos dos fármacos , Animais , Sulfato de Bário/administração & dosagem , Disponibilidade Biológica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Formas de Dosagem , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Absorção Gastrointestinal/fisiologia , Masculino , Porosidade , Ratos , Ratos Endogâmicos F344
12.
Pharmaceutics ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35056908

RESUMO

The rapid progress in biotechnology over the past few decades has accelerated the large-scale production of therapeutic peptides and proteins, making them available in medical practice. However, injections are the most common method of administration; these procedures might lead to inconvenience. Non-invasive medications, such as oral administration of bio-compounds, can reduce or eliminate pain and increase safety. The aim of this project was to develop and characterize novel melanin concentrating hormone (MCH) formulations for oral administration. As a drug delivery system, penetration enhancer combined alginate beads were formulated and characterized. The combination of alginate carriers with amphiphilic surfactants has not been described yet. Due to biosafety having high priority in the case of novel pharmaceutical formulations, the biocompatibility of selected auxiliary materials and their combinations was evaluated using different in vitro methods. Excipients were selected according to the performed toxicity measurements. Besides the cell viability tests, physical properties and complex bioavailability assessments were performed as well. Our results suggest that alginate beads are able to protect melanin concentrating hormones. It has been also demonstrated that penetration enhancer combined alginate beads might play a key role in bioavailability improvement. These formulations were found to be promising tools for oral peptide delivery. Applied excipients and the performed delivery systems are safe and highly tolerable; thus, they can improve patients' experience and promote adherence.

13.
Molecules ; 25(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322100

RESUMO

One of the most promising emerging innovations in personalized medication is based on 3D printing technology. For use as authorized medications, 3D-printed products require different in vitro tests, including dissolution and biocompatibility investigations. Our objective was to manufacture implantable drug delivery systems using fused deposition modeling, and in vitro tests were performed for the assessment of these products. Polylactic acid, antibacterial polylactic acid, polyethylene terephthalate glycol, and poly(methyl methacrylate) filaments were selected, and samples with 16, 19, or 22 mm diameters and 0%, 5%, 10%, or 15% infill percentages were produced. The dissolution test was performed by a USP dissolution apparatus 1. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide dye (MTT)-based prolonged cytotoxicity test was performed on Caco-2 cells to certify the cytocompatibility properties. The implantable drug delivery systems were characterized by thermogravimetric and heatflow assay, contact angle measurement, scanning electron microscopy, microcomputed tomography, and Raman spectroscopy. Based on our results, it can be stated that the samples are considered nontoxic. The dissolution profiles are influenced by the material properties of the polymers, the diameter, and the infill percentage. Our results confirm the potential of fused deposition modeling (FDM) 3D printing for the manufacturing of different implantable drug delivery systems in personalized medicine and may be applied during surgical interventions.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco , Impressão Tridimensional , Próteses e Implantes , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Tecnologia Biomédica , Fenômenos Químicos , Diclofenaco/administração & dosagem , Diclofenaco/química , Fenômenos Mecânicos , Polímeros/química , Solubilidade , Termogravimetria , Microtomografia por Raio-X
14.
AAPS PharmSciTech ; 20(7): 290, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31428895

RESUMO

Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids.


Assuntos
Formas de Dosagem , Temperatura Alta , Metronidazol/química , Estômago , Disponibilidade Biológica , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Excipientes/química , Esvaziamento Gástrico , Metronidazol/farmacocinética , Solubilidade , Ácidos Esteáricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...