Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552050

RESUMO

Loss-of-function genetic tools are widely applied for validating therapeutic targets, but their utility remains limited by incomplete on- and uncontrolled off-target effects. We describe artificial RNA interference (ARTi) based on synthetic, ultra-potent, off-target-free shRNAs that enable efficient and inducible suppression of any gene upon introduction of a synthetic target sequence into non-coding transcript regions. ARTi establishes a scalable loss-of-function tool with full control over on- and off-target effects.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/genética
2.
J Pharmacol Exp Ther ; 384(3): 331-342, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36241203

RESUMO

Vascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 have complementary roles in angiogenesis and promote an immunosuppressive tumor microenvironment. It is anticipated that the combination of VEGF and ANG2 blockade could provide superior activity to the blockade of either pathway alone and that the addition of VEGF/ANG2 inhibition to an anti-programmed cell death protein-1 (PD-1) antibody could change the tumor microenvironment to support T-cell-mediated tumor cytotoxicity. Here, we describe the pharmacologic and antitumor activity of BI 836880, a humanized bispecific nanobody comprising two single-variable domains blocking VEGF and ANG2, and an additional module for half-life extension in vivo. BI 836880 demonstrated high affinity and selectivity for human VEGF-A and ANG2, resulting in inhibition of the downstream signaling of VEGF/ANG2 and a decrease in endothelial cell proliferation and survival. In vivo, BI 836880 exhibited significant antitumor activity in all patient-derived xenograft models tested, showing significantly greater tumor growth inhibition (TGI) than bevacizumab (VEGF inhibition) and AMG386 (ANG1/2 inhibition) in a range of models. In a Lewis lung carcinoma syngeneic tumor model, the combination of PD-1 inhibition with VEGF inhibition showed superior efficacy versus the blockade of either pathway alone. TGI was further increased with the addition of ANG2 inhibition to VEGF/PD-1 blockade. VEGF/ANG2 inhibition had a strong antiangiogenic effect. Our data suggest that the blockade of VEGF and ANG2 with BI 836880 may offer improved antitumor activity versus the blockade of either pathway alone and that combining VEGF/ANG2 inhibition with PD-1 blockade can further enhance antitumor effects. SIGNIFICANCE STATEMENT: Vascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 play key roles in angiogenesis and have an immunosuppressive effect in the tumor microenvironment. This study shows that BI 836880, a bispecific nanobody targeting VEGF and ANG2, demonstrates substantial antitumor activity in preclinical models. Combining VEGF/ANG2 inhibition with the blockade of the PD-1 pathway can further improve antitumor activity.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-2/metabolismo , Receptor de Morte Celular Programada 1 , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Inibidores da Angiogênese , Neoplasias/tratamento farmacológico , Morte Celular , Angiopoietina-1 , Microambiente Tumoral
3.
Nat Commun ; 13(1): 5969, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216795

RESUMO

Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.


Assuntos
Adenosina Trifosfatases , Fatores de Transcrição , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...