Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 37(24)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28970327

RESUMO

Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity. We find that the ability of Sae2 to promote MRX nuclease functions is important for DNA damage survival, particularly in the absence of Dna2 nuclease activity. In contrast, Sae2 nuclease activity is essential for DNA repair when the Mre11 nuclease is compromised. Resection of DNA breaks is impaired when either Sae2 activity is blocked, suggesting roles for both Mre11 and Sae2 nuclease activities in promoting the processing of DNA ends in vivo Finally, both activities of Sae2 are important for sporulation, indicating that the processing of meiotic breaks requires both Mre11 and Sae2 nuclease activities.


Assuntos
Endodesoxirribonucleases/genética , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 288(41): 29414-29, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23963457

RESUMO

Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.


Assuntos
DNA Helicases/genética , DNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Telômero/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Eletroforese em Gel de Ágar , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Citometria de Fluxo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Ligação Proteica , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
3.
Cell Cycle ; 10(10): 1690-8, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21508669

RESUMO

Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.


Assuntos
DNA Helicases/genética , Genes Letais , Proteínas de Saccharomyces cerevisiae/genética , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Deleção de Genes , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/metabolismo
4.
PLoS One ; 4(1): e4267, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19165339

RESUMO

The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5' to 3' exonuclease degradation creating a single-stranded 3' overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3' to 5', rather than 5' to 3' activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5' to 3' degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Delta with a pif1Delta. The dna2Delta pif1Delta mutant is IR-resistant. We have determined that dna2Delta pif1Delta mre11-D56N and dna2Delta pif1Delta mre11-H125N strains are equally as sensitive to IR as mre11Delta strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Delta pif1Delta mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5' to 3' degradation at DSB ends. We further show that sgs1Delta mre11-H125N, but not sgs1Delta, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Dano ao DNA , Modelos Biológicos , Mutação , Plasmídeos/metabolismo , Saccharomyces cerevisiae/fisiologia , Raios X
5.
Mol Cell ; 32(1): 106-17, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18851837

RESUMO

Yeast Mrc1, ortholog of metazoan Claspin, is both a central component of normal DNA replication forks and a mediator of the S phase checkpoint. We report that Mrc1 interacts with Pol2, the catalytic subunit of DNA polymerase epsilon, essential for leading-strand DNA replication and for the checkpoint. In unperturbed cells, Mrc1 interacts independently with both the N-terminal and C-terminal halves of Pol2 (Pol2N and Pol2C). Strikingly, phosphorylation of Mrc1 during the S phase checkpoint abolishes Pol2N binding, but not Pol2C interaction. Mrc1 is required to stabilize Pol2 at replication forks stalled in HU. The bimodal Mrc1/Pol2 interaction may be an additional step in regulating the S phase checkpoint response to DNA damage on the leading strand. We propose that Mrc1, which also interacts with the MCMs, may modulate coupling of polymerization and unwinding at the replication fork.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase II/química , DNA Polimerase II/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Modelos Moleculares , Complexos Multiproteicos , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
6.
Genetics ; 178(2): 633-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245343

RESUMO

Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.


Assuntos
DNA Polimerase II/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Polimerase II/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Genótipo , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell Biol ; 26(7): 2490-500, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537895

RESUMO

The precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus. Specifically, we show that deletion of PIF1 suppresses the lethality of a DNA2-null mutant. The pif1delta dna2delta strain remains methylmethane sulfonate sensitive and temperature sensitive; however, these phenotypes can be suppressed by further deletion of a subunit of pol delta, POL32. Deletion of PIF1 also suppresses the cold-sensitive lethality and hydroxyurea sensitivity of the pol32delta strain. Dna2 is thought to function by cleaving long flaps that arise during OFP due to excessive strand displacement by pol delta and/or by an as yet unidentified helicase. Thus, suppression of dna2delta can be rationalized if deletion of POL32 and/or PIF1 results in a reduction in long flaps that require Dna2 for processing. We further show that deletion of DNA2 suppresses the long-telomere phenotype and the high rate of formation of gross chromosomal rearrangements in pif1Delta mutants, suggesting a role for Dna2 in telomere elongation in the absence of Pif1.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Dano ao DNA , Deleção de Genes , Genes Fúngicos/genética , Metanossulfonato de Metila/farmacologia , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Supressão Genética/genética , Telomerase/antagonistas & inibidores , Temperatura
8.
PLoS Genet ; 1(6): e61, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16327883

RESUMO

To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Replicação do DNA , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/química , Mapeamento Cromossômico , Análise por Conglomerados , Dano ao DNA , Reparo do DNA , DNA Ribossômico/genética , Histonas/química , Humanos , Estresse Oxidativo , Troca de Cromátide Irmã
9.
Mutat Res ; 532(1-2): 157-72, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14643435

RESUMO

We and others have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We showed previously that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the hypomorphic dna2-2 helicase mutant. Deletion of FOB1 suppresses the elevated pausing and DSB formation. Our current work shows that mutation inactivating Sgs1, the yeast RecQ helicase ortholog, also causes accumulation of stalled replication forks and DSBs at the rDNA RFB. Either deletion of FOB1, which suppresses fork blocking and certain types of rDNA recombination, or an increase in SIR2 gene dosage, which suppresses rDNA recombination, reduces the number of forks persisting at the RFB. Although dna2-2 sgs1Delta double mutants are conditionally lethal, they do not show enhanced rDNA defects compared to sgs1Delta alone. However, surprisingly, the dna2-2 sgs1Delta lethality is suppressed by deletion of FOB1. On the other hand, the dna2-2 sgs1Delta lethality is only partially suppressed by deletion of rad51Delta. We propose that the replication-associated defects that we document in the rDNA are characteristic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA Ribossômico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Cromossomos Fúngicos , DNA Helicases/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , RecQ Helicases , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
10.
J Biol Chem ; 278(25): 22513-22, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12686542

RESUMO

We have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae and contributes to the shortened lifespan of dna2 mutants. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We show directly that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the early aging, hypomorphic dna2-2 helicase mutant. Deletion of FOB1, encoding the fork barrier protein, suppresses the elevated pausing and DSB formation, and represses initiation at rDNA ARSs. The dna2-2 mutation is synthetically lethal with deltarrm3, encoding another DNA helicase involved in rDNA replication. It does not appear to be the case that the rDNA is the only determinant of genome stability during the yeast lifespan however since strains carrying deletion of all chromosomal rDNA but with all rDNA supplied on a plasmid, have decreased rather than increased lifespan. We conclude that the replication-associated defects that we can measure in the rDNA are symbolic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones.


Assuntos
Adenosina Trifosfatases/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Bleomicina/farmacologia , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Recombinação Genética , Mapeamento por Restrição , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Deleção de Sequência
11.
Mol Cell Biol ; 22(12): 4136-46, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12024027

RESUMO

Surprisingly, the contribution of defects in DNA replication to the determination of yeast life span has never been directly investigated. We show that a replicative yeast helicase/nuclease, encoded by DNA2 and a member of the same helicase subfamily as the RecQ helicases, is required for normal life span. All of the phenotypes of old wild-type cells, for example, extended cell cycle time, age-related transcriptional silencing defects, and nucleolar reorganization, occur after fewer generations in dna2 mutants than in the wild type. In addition, the life span of dna2 mutants is extended by expression of an additional copy of SIR2 or by deletion of FOB1, which also increase wild-type life span. The ribosomal DNA locus and the nucleolus seem to be particularly sensitive to defects in dna2 mutants, although in dna2 mutants extrachromosomal ribosomal circles do not accumulate during the aging of a mother cell. Several other replication mutations, such as rad27 Delta, encoding the FEN-1 nuclease involved in several aspects of genomic stability, also show premature aging. We propose that replication fork failure due to spontaneous, endogenous DNA damage and attendant genomic instability may contribute to replicative senescence. This may imply that the genomic instability, segmental premature aging symptoms, and cancer predisposition associated with the human RecQ helicase diseases, such as Werner, Bloom, and Rothmund-Thomson syndromes, are also related to replicative stress.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Leveduras/fisiologia , Envelhecimento , Endodesoxirribonucleases/genética , Endonucleases Flap , Proteínas Fúngicas/genética , Histona Desacetilases/genética , Mutação , Sirtuína 1 , Sirtuína 2 , Sirtuínas , Transativadores/genética
12.
Mol Cell Biol ; 22(12): 4202-17, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12024033

RESUMO

We have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G(1) phase, when there is no telomere replication and the telomere is transcriptionally silenced. In S phase, there is a dramatic redistribution of Dna2p from telomeres to sites throughout the replicating chromosomes. Dna2p is again localized to telomeres in late S, where it remains through G(2) and until the next S phase. Telomeric localization of Dna2p required Sir3p, since the amount of Dna2p found at telomeres by two different assays, one-hybrid and ChIP, is severely reduced in strains lacking Sir3p. The Dna2p is also distributed throughout the nucleus in cells growing in the presence of double-strand-break-inducing agents such as bleomycin. Finally, we show that Dna2p is functionally required for telomerase-dependent de novo telomere synthesis and also participates in telomere lengthening in mutants lacking telomerase.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Bases , Ciclo Celular/genética , Reagentes de Ligações Cruzadas/química , Dano ao DNA , DNA Helicases/química , DNA Helicases/genética , Replicação do DNA , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação , Transporte Proteico , Transativadores/genética , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...