Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 38: 141-155, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36381245

RESUMO

Background/Objective: Osteoarthritis (OA) is a multifactorial joint disease associated with the deterioration of chondrocytes and inflammation. Treatment of OA is only aimed at reducing pain and improving joint function. Recently, extracellular vesicles (EVs) secreted from stem cells have emerged as a cell regenerative tool in several degenerative diseases, including OA. We hypothesised that induced pluripotent stem cell (iPSC)-derived EVs would be beneficial for regenerating chondrocytes and OA therapy. Therefore, we aimed to investigate iPSC-EVs' effects on chondrocyte behaviour in an interleukin 1 beta (IL-1ß)-induced in vitro OA model and anterior cruciate ligament transection (ACLT)-induced in vivo OA model of rabbit articular cartilage. Methods: The iPSC-EVs were isolated by sequential ultracentrifugation from a 48-h-incubated conditional medium of iPSC. The isolated iPSC-EVs were characterised by transmission electron microscopy, western blot analyses, and dynamic light scatter. The effects of iPSC-EVs on the viability of human primary chondrocytes and cell senescence were analysed. Premature senescence of cells was induced by long-term incubation with low doses of hydrogen peroxide. To investigate the therapeutic effect of iPSC-EVs on OA chondrocytes in vitro, IL-1ß was used to induce chondrocyte damage. Inflammatory macrophages were activated from THP-1 monocytes to observe the impact of iPSC-EV on macrophage polarisation. The phenotypes of the macrophages exposed to iPSC-EVs were evaluated by ELISA and western blot analyses. The primary chondrocytes were co-cultured with different phenotypes of macrophages to observe the expression of collagen II and catabolic enzymes in chondrocytes. iPSC-EVs were injected intraarticularly into the rabbit with an ACLT-induced OA model. The progression of lesions was assessed through macroscopic and histopathological studies. Results: We showed that iPSC-EVs significantly stimulated the proliferation of primary human chondrocytes and suppressed cell senescence by regulating the expression of p21 and collagen II. iPSC-EVs reduced matrix degradation enzymes and IL-6 expression and attenuated IL-1ß-mediated cell death of chondrocytes. Furthermore, iPSC-EVs modulated macrophage polarisation, resulting in the rescue of damaged chondrocytes in an inflammatory microenvironment. In the rabbit ACLT model, the OA-like lesions, including inflammation, subchondral bone protrusion, and articular cartilage destruction, were ameliorated by iPSC-EV. A histopathological study consistently revealed that iPSC-EVs attenuated ACLT-mediated alteration of MMP13 and ADAMTS5 and collagen II expression. Conclusion: iPSC-EVs protected chondrocytes by enhancing cell proliferation, suppressing premature senescence, and maintaining homeostasis of collagen II synthesis and matrix degradation enzymes such as matrix metalloproteinases (MMPs) and ADAMTS5. iPSC-EVs also reduced cell death in IL-1ß-mediated chondrocyte cell damage. In the rabbit ACLT-induced OA model, iPSC-EV injection reduced cartilage destruction, as indicated by the upregulation of collagen II and down-regulation of MMP13 and ADAMTS5. Overall, our results suggest that iPSC-EVs possess therapeutic potential and may be used as an OA treatment option. The translational potential of this article: This study highlights the potential of iPSC-EVs as a therapeutic option for chondrocyte regeneration and OA treatment.

2.
Stem Cell Res Ther ; 10(1): 284, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547874

RESUMO

BACKGROUND: Transient receptor potential vanilloid 1 (TRPV1), recognized as a hyperosmolarity sensor, is a crucial ion channel involved in the pathogenesis of neural and glial signaling. Recently, TRPV1 was determined to play a role in retinal physiology and visual transmission. In this study, we sought to clarify the role of TRPV1 and the downstream pathway in the osmotic stress-related retina ganglion cell (RGC) damage. METHODS: First, we modified the RGC differentiation protocol to obtain a homogeneous RGC population from human induced pluripotent stem cells (hiPSCs). Subsequently, we induced high osmotic pressure in the hiPSC-derived RGCs by administering NaCl solution and observed the behavior of the TRPV1 channel and its downstream cascade. RESULTS: We obtained a purified RGC population from the heterogeneous retina cell population using our modified method. Our findings revealed that TRPV1 was activated after 24 h of NaCl treatment. Upregulation of TRPV1 was noted with autophagy and apoptosis induction. Downstream protein expression analysis indicated increased phosphorylation of CREB and downregulated brain-derived neurotrophic factor (BDNF). However, hyperosmolarity-mediated defective morphological change and apoptosis of RGCs, CREB phosphorylation, and BDNF downregulation were abrogated after concomitant treatment with the PKA inhibitor H89. CONCLUSION: Collectively, our study results indicated that the TRPV1-PKA pathway contributed to cellular response under high levels of osmolarity stress; furthermore, the PKA inhibitor had a protective effect on RGCs exposed to this stress. Therefore, our findings may assist in the treatment of eye diseases involving RGC damage.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Pressão Osmótica , Células Ganglionares da Retina/metabolismo , Canais de Cátion TRPV/genética , Apoptose , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoquinolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais , Sulfonamidas/farmacologia , Canais de Cátion TRPV/metabolismo , Regulação para Cima
4.
Stem Cell Res ; 29: 152-156, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674172

RESUMO

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy manifested as splitting of anatomical layers of retina. In this report, we generated a patient-specific induced pluripotent stem cell (iPSC) line, TVGH-iPSC-013-05, from the peripheral blood mononuclear cells of a male patient with XLRS by using the Sendai-virus delivery system. We believe that XLRS patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.


Assuntos
Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Retinosquise , Adolescente , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Retinosquise/genética , Retinosquise/metabolismo , Retinosquise/patologia
5.
ACS Appl Mater Interfaces ; 10(14): 11474-11485, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29557633

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a highly orchestrated process motivated by the nature of physical and chemical compositions of the tumor microenvironment (TME). The role of the physical framework of the TME in guiding cells toward EMT is poorly understood. To investigate this, breast cancer MDA-MB-231 and MCF-7 cells were cultured on nanochips comprising tantalum oxide nanodots ranging in diameter from 10 to 200 nm, fabricated through electrochemical approach and collectively referred to as artificial microenvironments. The 100 and 200 nm nanochips induced the cells to adopt an elongated or spindle-shaped morphology. The key EMT genes, E-cadherin, N-cadherin, and vimentin, displayed the spatial control exhibited by the artificial microenvironments. The E-cadherin gene expression was attenuated, whereas those of N-cadherin and vimentin were amplified by 100 and 200 nm nanochips, indicating the induction of EMT. Transcription factors, snail and twist, were identified for modulating the EMT genes in the cells on these artificial microenvironments. Localization of EMT proteins observed through immunostaining indicated the loss of cell-cell junctions on 100 and 200 nm nanochips, confirming the EMT induction. Thus, by utilizing an in vitro approach, we demonstrate how the physical framework of the TME may possibly trigger or assist in inducing EMT in vivo. Applications in the fields of drug discovery, biomedical engineering, and cancer research are expected.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Mama , Caderinas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição , Vimentina
6.
Exp Cell Res ; 363(2): 299-309, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29366807

RESUMO

Leber's hereditary optic neuropathy (LHON) is the maternally inherited mitochondrial disease caused by homoplasmic mutations in mitochondrial electron transport chain Complex I subunit genes. The mechanism of its incomplete penetrance is still largely unclear. In this study, we created the patient-specific human induced pluripotent stem cells (hiPSCs) from MT-ND4 mutated LHON-affected patient, asymptomatic mutation carrier and healthy control, and differentiated them into retinal ganglion cells (RGCs). We found the defective neurite outgrowth in affected RGCs, but not in the carrier RGCs which had significant expression of SNCG gene. We observed enhanced mitochondrial biogenesis in affected and carrier derived RGCs. Surprisingly, we observed increased NADH dehydrogenase enzymatic activity of Complex I in hiPSC-derived RGCs of asymptomatic carrier, but not of the affected patient. LHON mutation substantially decreased basal respiration in both affected and unaffected carrier hiPSCs, and had the same effect on spare respiratory capacity, which ensures normal function of mitochondria in conditions of increased energy demand or environmental stress. The expression of antioxidant enzyme catalase was decreased in affected and carrier patient hiPSC-derived RGCs as compared to the healthy control, which might indicate to higher oxidative stress-enriched environment in the LHON-specific RGCs. Microarray profiling demonstrated enhanced expression of cell cycle machinery and downregulation of neuronal specific genes.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Diferenciação Celular/fisiologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
7.
Biomed Opt Express ; 9(12): 6132-6144, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065418

RESUMO

This study proposed an ultrahigh-resolution multi-contrast optical coherence tomography system integrated with fundus photography for in vivo retinal imaging of rodents. A supercontinuum light source was used in the system, providing an axial resolution of less than 3 µm within 1.8 mm (in the tissue). Three types of tissue contrast based on backscattered intensity, phase retardation, and microvasculature at a capillary level can be simultaneously obtained using the proposed system. Pigmented Long-Evans, non-pigmented (albino) Sprague Dawley, and Royal College of Surgeons rats were imaged and compared. In vivo imaging results were validated with histology.

8.
Nucleic Acids Res ; 46(D1): D296-D302, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126174

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 22 nucleotides that are involved in negative regulation of mRNA at the post-transcriptional level. Previously, we developed miRTarBase which provides information about experimentally validated miRNA-target interactions (MTIs). Here, we describe an updated database containing 422 517 curated MTIs from 4076 miRNAs and 23 054 target genes collected from over 8500 articles. The number of MTIs curated by strong evidence has increased ∼1.4-fold since the last update in 2016. In this updated version, target sites validated by reporter assay that are available in the literature can be downloaded. The target site sequence can extract new features for analysis via a machine learning approach which can help to evaluate the performance of miRNA-target prediction tools. Furthermore, different ways of browsing enhance user browsing specific MTIs. With these improvements, miRTarBase serves as more comprehensively annotated, experimentally validated miRNA-target interactions databases in the field of miRNA related research. miRTarBase is available at http://miRTarBase.mbc.nctu.edu.tw/.


Assuntos
Bases de Dados Genéticas , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Mineração de Dados , Humanos , RNA Mensageiro/química , Interface Usuário-Computador
9.
Int J Mol Sci ; 18(9)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28930148

RESUMO

Optic neuropathies, such as glaucoma and Leber's hereditary optic neuropathy (LHON) lead to retinal ganglion cell (RGC) loss and therefore motivate the application of transplantation technique into disease therapy. However, it is a challenge to direct the transplanted optic nerve axons to the correct location of the retina. The use of appropriate scaffold can promote the proper axon growth. Recently, biocompatible materials have been integrated into the medical field, such as tissue engineering and reconstruction of damaged tissues or organs. We, herein, utilized nano-imprinting to create a scaffold mimicking the in vitro tissue microarchitecture, and guiding the axonal growth and orientation of the RGCs. We observed that the robust, long, and organized axons of human induced pluripotent stem cell (iPSC)-derived RGCs projected axially along the scaffold grooves. The RGCs grown on the scaffold expressed the specific neuronal biomarkers indicating their proper functionality. Thus, based on our in vitro culture system, this device can be useful for the neurophysiological analysis and transplantation for ophthalmic neuropathy treatment.


Assuntos
Axônios/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Ganglionares da Retina/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Humanos , Nanotecnologia/métodos , Neuritos/fisiologia , Fatores de Tempo
10.
Medicine (Baltimore) ; 95(12): e3195, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015217

RESUMO

The postresuscitative hemodynamic status of children with traumatic out-of-hospital cardiac arrest (OHCA) might be impacted by the early administration of epinephrine, but this topic has not been well addressed. The aim of this study was to analyze the early postresuscitative hemodynamics, survival, and neurologic outcome according to different time points of first epinephrine treatment among children with traumatic OHCA.Information on 388 children who presented to the emergency departments of 3 medical centers and who were treated with epinephrine for traumatic OHCA during the study period (2003-2012) was retrospectively collected. The early postresuscitative hemodynamic features (cardiac functions, end-organ perfusion, and consciousness), survival, and neurologic outcome according to different time points of first epinephrine treatment (early: <15, intermediate: 15-30, and late: >30 minutes after collapse) were analyzed.Among 165 children who achieved sustained return of spontaneous circulation, 38 children (9.8%) survived to discharge and 12 children (3.1%) had good neurologic outcomes. Early epinephrine increased the postresuscitative heart rate and blood pressure in the first 30 minutes, but ultimately impaired end-organ perfusion (decreased urine output and initial creatinine clearance) (all P < 0.05). Early epinephrine treatment increased the chance of achieving sustained return of spontaneous circulation, but did not increase the rates of survival and good neurologic outcome.Early epinephrine temporarily increased heart rate and blood pressure in the first 30 minutes of the postresuscitative period, but impaired end-organ perfusion. Most importantly, the rates of survival and good neurologic outcome were not significantly increased by early epinephrine administration.


Assuntos
Epinefrina/administração & dosagem , Hemodinâmica/efeitos dos fármacos , Parada Cardíaca Extra-Hospitalar/tratamento farmacológico , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Adolescente , Reanimação Cardiopulmonar , Criança , Pré-Escolar , Intervenção Médica Precoce , Epinefrina/farmacologia , Feminino , Humanos , Lactente , Masculino , Parada Cardíaca Extra-Hospitalar/etiologia , Parada Cardíaca Extra-Hospitalar/terapia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Ferimentos e Lesões/complicações
11.
Biomed Res Int ; 2016: 2106342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28058255

RESUMO

Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.


Assuntos
Acidose/tratamento farmacológico , Glutamina/farmacologia , Parada Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Acidose/sangue , Acidose/etiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Parada Cardíaca/complicações , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco Pluripotentes Induzidas/metabolismo , Ratos , Ratos Wistar
12.
Artigo em Inglês | MEDLINE | ID: mdl-24621216

RESUMO

Asian tapir (Tapirus indicus) is categorized as Endangered on the 2008 IUCN red list. The first full-length mitochondrial DNA (mtDNA) sequence of Asian tapir is 16,717 bp in length. Base composition shows 34.6% A, 27.2% T, 25.8% C and 12.3% G. Highest polymorphic site is on the control region as typical for many species.


Assuntos
Genoma Mitocondrial , Perissodáctilos/genética , Animais , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Dados de Sequência Molecular , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...