Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239934

RESUMO

Differential methylation (DM) is actively recruited in different types of fundamental and translational studies. Currently, microarray- and NGS-based approaches for methylation analysis are the most widely used with multiple statistical models designed to extract differential methylation signatures. The benchmarking of DM models is challenging due to the absence of gold standard data. In this study, we analyze an extensive number of publicly available NGS and microarray datasets with divergent and widely utilized statistical models and apply the recently suggested and validated rank-statistic-based approach Hobotnica to evaluate the quality of their results. Overall, microarray-based methods demonstrate more robust and convergent results, while NGS-based models are highly dissimilar. Tests on the simulated NGS data tend to overestimate the quality of the DM methods and therefore are recommended for use with caution. Evaluation of the top 10 DMC and top 100 DMC in addition to the not-subset signature also shows more stable results for microarray data. Summing up, given the observed heterogeneity in NGS methylation data, the evaluation of newly generated methylation signatures is a crucial step in DM analysis. The Hobotnica metric is coordinated with previously developed quality metrics and provides a robust, sensitive, and informative estimation of methods' performance and DM signatures' quality in the absence of gold standard data solving a long-existing problem in DM analysis.


Assuntos
Metilação de DNA , Modelos Estatísticos , Análise em Microsséries
2.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696436

RESUMO

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


Assuntos
Alphacoronavirus/isolamento & purificação , Betacoronavirus/isolamento & purificação , Quirópteros/virologia , Genoma Viral/genética , Metagenoma/genética , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Quirópteros/genética , Biologia Computacional/métodos , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Moscou , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificação , Análise de Sequência de DNA
3.
F1000Res ; 10: 1260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36204675

RESUMO

A Molecular Features Set (MFS), is a result of a vast diversity of bioinformatics pipelines. The lack of a "gold standard" for most experimental data modalities makes it difficult to provide valid estimation for a particular MFS's quality. Yet, this goal can partially be achieved by analyzing inner-sample Distance Matrices (DM) and their power to distinguish between phenotypes. The quality of a DM can be assessed by summarizing its power to quantify the differences of inner-phenotype and outer-phenotype distances. This estimation of the DM quality can be construed as a measure of the MFS's quality.  Here we propose Hobotnica, an approach to estimate MFSs quality by their ability to stratify data, and assign them significance scores, that allow for collating various signatures and comparing their quality for contrasting groups.


Assuntos
Biologia Computacional , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA