Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171643, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471588

RESUMO

The emergence and selection of antibiotic resistance is a major public health problem worldwide. The presence of antibiotic-resistant bacteria (ARBs) in natural and anthropogenic environments threatens the sustainability of efforts to reduce resistance in human and animal populations. Here, we use mathematical modeling of the selective effect of antibiotics and contaminants on the dynamics of bacterial resistance in water to analyze longitudinal spatio-temporal data collected in hospital and urban wastewater between 2012 and 2015. Samples were collected monthly during the study period at four different sites in Haute-Savoie, France: hospital and urban wastewater, before and after water treatment plants. Three different categories of exposure variables were collected simultaneously: 1) heavy metals, 2) antibiotics and 3) surfactants for a total of 13 drugs/molecules; in parallel to the normalized abundance of 88 individual genes and mobile genetic elements, mostly conferring resistance to antibiotics. A simple hypothesis-driven model describing weekly antibiotic resistance gene (ARG) dynamics was proposed to fit the available data, assuming that normalized gene abundance is proportional to antibiotic resistant bacteria (ARB) populations in water. The detected compounds were found to influence the dynamics of 17 genes found at multiple sites. While mercury and vancomycin were associated with increased ARG and affected the dynamics of 10 and 12 identified genes respectively, surfactants antagonistically affected the dynamics of three genes. The models proposed here make it possible to analyze the relationship between the persistence of resistance genes in the aquatic environment and specific compounds associated with human activities from longitudinal data. Our analysis of French data over 2012-2015 identified mercury and vancomycin as co-selectors for some ARGs.


Assuntos
Expossoma , Mercúrio , Humanos , Águas Residuárias , Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Vancomicina , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Antibacterianos/farmacologia , Hospitais , Tensoativos
2.
Methods Protoc ; 7(1)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392689

RESUMO

The connection between imbalances in the human gut microbiota, known as dysbiosis, and various diseases has been well established. Current techniques for sampling the small intestine are both invasive for patients and costly for healthcare facilities. Most studies on human gut microbiome are conducted using faecal samples, which do not accurately represent the microbiome in the upper intestinal tract. A pilot clinical investigation, registered as NCT05477069 and sponsored by the Grenoble Alpes University Hospital, is currently underway to evaluate a novel ingestible medical device (MD) designed for collecting small intestinal liquids by Pelican Health. This study is interventional and monocentric, involving 15 healthy volunteers. The primary objective of the study is to establish the safety and the performance of the MD when used on healthy volunteers. Secondary objectives include assessing the device's performance and demonstrating the difference between the retrieved sample from the MD and the corresponding faecal sample. Multi-omics analysis will be performed, including metagenomics, metabolomics, and culturomics. We anticipate that the MD will prove to be safe without any reported adverse effects, and we collected samples suitable for the proposed omics analyses in order to demonstrate the functionality of the MD and the clinical potential of the intestinal content.

3.
Water Res ; 244: 120408, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678036

RESUMO

Understanding the dynamics of antibiotic resistance gene (ARG) transfer and dissemination in natural environments remains challenging. Biofilms play a crucial role in bacterial survival and antimicrobial resistance (AMR) dissemination in natural environments, particularly in aquatic systems. This study focused on hospital and urban wastewater (WW) biofilms to investigate the potential for ARG dissemination through mobile genetic elements (MGEs). The analysis included assessing the biofilm extracellular polymeric substances (EPS), microbiota composition as well as metatranscriptomic profiling of the resistome and mobilome. We produced both in vitro and in situ biofilms and performed phenotypic and genomic analyses. In the in vitro setup, untreated urban and hospital WW was used to establish biofilm reactors, with ciprofloxacin added as a selective agent at minimal selective concentration. In the in situ setup, biofilms were developed directly in hospital and urban WW pipes. We first showed that a) the composition of EPS differed depending on the growth environment (in situ and in vitro) and the sampling origin (hospital vs urban WW) and that b) ciprofloxacin impacted the composition of the EPS. The metatranscriptomic approach showed that a) expression of several ARGs and MGEs increased upon adding ciprofloxacin for biofilms from hospital WW only and b) that the abundance and type of plasmids that carried individual or multiple ARGs varied depending on the WW origins of the biofilms. When the same plasmids were present in both, urban and hospital WW biofilms, they carried different ARGs.  We showed that hospital and urban wastewaters shaped the structure and active resistome of environmental biofilms, and we confirmed that hospital WW is an important hot spot for the dissemination and selection of antimicrobial resistance. Our study provides a comprehensive assessment of WW biofilms as crucial hotspots for ARG transfer. Hospital WW biofilms exhibited distinct characteristics, including higher eDNA abundance and expression levels of ARGs and MGEs, highlighting their role in antimicrobial resistance dissemination. These findings emphasize the importance of understanding the structural, ecological, functional, and genetic organization of biofilms in anthropized environments and their contribution to antibiotic resistance dynamics.


Assuntos
Anti-Infecciosos , Microbiota , Águas Residuárias , Biofilmes , Ciprofloxacina/farmacologia , Hospitais
4.
Antibiotics (Basel) ; 11(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35326767

RESUMO

Anthropogenic pressure is known to be a key driver of antimicrobial resistance (AMR) dissemination in the environment. Especially in lower income countries, with poor infrastructure, the level of AMR dissemination is high. Therefore, we assessed the levels and diversity of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Lebanese rivers at estuaries' sites (n = 72) of the Mediterranean Sea in spring 2017 and winter 2018. METHODS: A combined approach using culture techniques and high throughput qPCR were applied to identify ARB and ARGs in rivers along the Lebanese coast. RESULTS: Multidrug-resistant Gram-negative (Enterobacterales and Pseudomonas spp.) and Gram-positive bacterial pathogens were isolated. Levels of ARGs were highest in the winter campaign and areas with high anthropogenic activities and population growth with an influx of refugees. CONCLUSION: Qualitative analysis of ARB and the analysis of the Lebanese estuaries' resistome revealed critical levels of contamination with pathogenic bacteria and provided significant information about the spread of ARGs in anthropogenically impacted estuaries.

5.
Sci Total Environ ; 806(Pt 2): 151190, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710419

RESUMO

Intensive aquaculture is an important source of organic waste and antibiotics into the marine environment. Yet, their impacts on benthic marine ecosystems are poorly understood. Here, we investigated the ecological impacts of fish feed waste alone and in combination with three different antibiotics (i.e., oxytetracycline, florfenicol and flumequine) in benthic ecosystems of the Mediterranean Sea by performing a field experiment. We assessed the fate of the antibiotics in the sediment and their accumulation in wild fauna after two weeks of exposure. Moreover, we investigated the impact of the feed waste alone and in combination with the antibiotics on sediment physico-chemical properties, on benthic invertebrates, as well as on the microbiota and resistome of the sampled sediments. One week after the last antibiotic application, average oxytetracycline and flumequine concentrations in the sediment were <1% and 15% of the applied dose, respectively, while florfenicol was not detected. Flumequine concentrations in wild invertebrates reached 3 µg g-1, while concentrations of oxytetracycline were about an order of magnitude lower, and florfenicol was not detected. Feed waste, with and without antibiotics, increased the concentration of fine particulate matter, affected the pH and redox conditions, and significantly reduced the biodiversity and abundance of benthic invertebrates. Feed waste also had a significant influence on the structure of sediment microbial communities, while specific effects related to the different antibiotics ranged from insignificant to mild. The presence of antibiotics significantly influenced the normalized abundance of the measured antibiotic resistance genes. Florfenicol and oxytetracycline contributed to an increase of genes conferring resistance to macrolides, tetracyclines, aminoglycosides and chloramphenicol, while flumequine had a less clear impact on the sediment resistome. This study demonstrates that feed waste from aquaculture farms can rapidly alter the habitat and biodiversity of Mediterranean benthic ecosystems, while antibiotic residual concentrations can contribute to the enrichment of bacterial genes resistant to antibiotic classes that are of high relevance for human medicine.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Aquicultura , Biodiversidade , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Mar Mediterrâneo , Poluentes Químicos da Água/análise
6.
Curr Opin Microbiol ; 64: 117-124, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700125

RESUMO

There is evidence that human activity causes pollution that contributes to an enhanced selection of bacterial pathogens in the environment. In this review, we consider how environmental pollution can favour the selection of bacterial pathogens in the environment. We specifically discuss pollutants released into the environment by human activities (mainly human waste) that are associated with the selection for genetic features in environmental bacterial populations that lead to the emergence of bacterial pathogens. Finally, we also identify key pollutants that are associated with antibiotic resistance and discuss possibilities of how to prevent their release into the environment.


Assuntos
Antibacterianos , Poluentes Ambientais , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Poluentes Ambientais/toxicidade , Poluição Ambiental , Humanos
7.
Water Res X ; 7: 100045, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32072151

RESUMO

Wastewaters (WW) are important sources for the dissemination of antimicrobial resistance (AMR) into the environment. Hospital WW (HWW) contain higher loads of micro-pollutants and AMR markers than urban WW (UWW). Little is known about the long-term dynamics of H and U WW and the impact of their joined treatment on the general burden of AMR. Here, we characterized the resistome, microbiota and eco-exposome signature of 126 H and U WW samples treated separately for three years, and then mixed, over one year. Multi-variate analysis and machine learning revealed a robust signature for each WW with no significant variation over time before mixing, and once mixed, both WW closely resembled Urban signatures. We demonstrated a significant impact of pharmaceuticals and surfactants on the resistome and microbiota of H and U WW. Our results present considerable targets for AMR related risk assessment of WW.

8.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767712

RESUMO

Effluents from wastewater treatment plants (WWTPs) have been proposed to act as point sources of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. Hospital sewage may contribute to the spread of ARB and ARGs as it contains the feces and urine of hospitalized patients, who are more frequently colonized with multi-drug resistant bacteria than the general population. However, whether hospital sewage noticeably contributes to the quantity and diversity of ARGs in the general sewerage system has not yet been determined.Here, we employed culture-independent techniques, namely 16S rRNA gene sequencing and nanolitre-scale quantitative PCRs, to assess the role of hospital effluent as a point source of ARGs in the sewerage system, through comparing microbiota composition and levels of ARGs in hospital sewage with WWTP influent with and without hospital sewage.Compared to other sites, hospital sewage was richest in human-associated bacteria and contained the highest relative levels of ARGs. Yet, the relative abundance of ARGs was comparable in the influent of WWTPs with and without hospital sewage, suggesting that hospitals do not contribute importantly to the quantity and diversity of ARGs in the investigated sewerage system.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Esgotos/microbiologia , Antibacterianos/farmacologia , Genes Bacterianos/genética , Hospitais , Humanos , Microbiota/efeitos dos fármacos , Microbiota/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Purificação da Água/métodos
9.
Microbiome ; 5(1): 88, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28803549

RESUMO

BACKGROUND: The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. RESULTS: From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. CONCLUSIONS: The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection for four resistance genes. While it was not possible to disentangle the effects of SDD from confounding variables in the patient cohort, our data suggest that the risks associated with ICU hospitalization and SDD on selection for antibiotic resistance are limited. However, we found evidence indicating that recolonization of the gut by antibiotic-resistant bacteria may occur upon ICU discharge and cessation of SDD.


Assuntos
Antibioticoprofilaxia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Unidades de Terapia Intensiva , Idoso , Aminoglicosídeos/administração & dosagem , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estado Terminal , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Voluntários Saudáveis , Hospitalização , Humanos , Macrolídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S
10.
J Antimicrob Chemother ; 69(8): 2215-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24710024

RESUMO

OBJECTIVES: Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. METHODS: We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. RESULTS: The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. CONCLUSIONS: ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens.


Assuntos
Antibacterianos/uso terapêutico , Descontaminação/métodos , Farmacorresistência Bacteriana/genética , Intestinos/microbiologia , Orofaringe/microbiologia , Antibacterianos/administração & dosagem , Técnicas de Tipagem Bacteriana , Sequência de Bases , Clostridium/efeitos dos fármacos , Clostridium/isolamento & purificação , Cuidados Críticos , DNA Bacteriano/genética , Fezes/microbiologia , Humanos , Masculino , Microbiota/efeitos dos fármacos , Microbiota/genética , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
11.
J Gen Virol ; 93(Pt 9): 1924-1929, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718567

RESUMO

Like severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus (HCoV)-NL63 employs angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry. SARS-CoV infection causes robust downregulation of cellular ACE2 expression levels and it has been suggested that the SARS-CoV effect on ACE2 is involved in the severity of disease. We investigated whether cellular ACE2 downregulation occurs at optimal replication conditions of HCoV-NL63 infection. The expression of the homologue of ACE2, the ACE protein not used as a receptor by HCoV-NL63, was measured as a control. A specific decrease for ACE2 protein level was observed when HCoV-NL63 was cultured at 34 °C. Culturing the virus at the suboptimal temperature of 37 °C resulted in low replication of the virus and the effect on ACE2 expression was lost. We conclude that the decline of ACE2 expression is dependent on the efficiency of HCoV-NL63 replication, and that HCoV-NL63 and SARS-CoV both affect cellular ACE2 expression during infection.


Assuntos
Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Coronavirus Humano NL63/fisiologia , Regulação para Baixo , Peptidil Dipeptidase A/genética , Replicação Viral , Enzima de Conversão de Angiotensina 2 , Linhagem Celular , Coronavirus Humano NL63/genética , Humanos , Peptidil Dipeptidase A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...