Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasitol ; 109(4): 423-435, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642324

RESUMO

Nanoduplicibothrium n. gen. is erected for the subgroup containing the smallest members of the "tetraphyllidean" family Serendipeidae with bothridia fused lengthwise in 2 pairs that lack both a distinct row of posterior loculi and a cephalic peduncle. Two new species in this genus are described. These are Nanoduplicibothrium leanneae n. gen. n. sp. from Rhinoptera bonasus off South Carolina and Nanoduplicibothrium megaphallum n. sp. from Rhinoptera jayakari off Mozambique. Two species currently assigned to Duplicibothrium are transferred to the new genus as Nanoduplicibothrium paulum n. comb and Nanoduplicibothrium jillae n. comb. and the diagnosis of Duplicibothrium is emended so that it aligns with the revised membership of the group. Duplicibothrium bilai n. sp. is also described from R. jayakari off Mozambique. The description of these species provides formal names for 3 species included in previously published molecular phylogenetic work under the provisional names Duplicibothrium n. sp. 2, Duplicibothrium n. sp. 4, and Duplicibothrium n. sp. 5, respectively. Erection of the new genus substantially reduces the number of instances of congeners in the family parasitizing the same host species because in most instances the pairs of species now represent 1 species each in Nanoduplicibothrium and Duplicibothrium. Sequence data for the D1-D3 region of the 28S rDNA gene were generated for Serendip for the first time from an undescribed species from Aetomylaeus asperrimus collected off Panama. This finding also expands the known host associations of the Serendipeidae beyond the Rhinopteridae to include a species of Myliobatidae. A maximum-likelihood phylogenetic analysis of all species of serendipeids for which data for the D1-D3 region of the 28S rDNA gene are available confirms the reciprocal monophyly of Nanoduplicibothrium, Duplicibothrium, and Serendip. The phylogenetic placement of the fourth genus in the family-the monotypic Glyphobothrium-remains to be determined.


Assuntos
Cestoides , Animais , Filogenia , Cestoides/genética , DNA Ribossômico , Especificidade de Hospedeiro , Panamá
2.
Zootaxa ; 5254(1): 30-50, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-37044737

RESUMO

This paper aims to expand understanding of a poorly known group of cestodes that parasitize an intriguingly diverse suite of elasmobranchs. The group's three currently described members (i.e., Pentaloculum macrocephalum, Pentaloculum hoi, and Zyxibothrium kamienae) parasitize an electric ray, a carpet shark, and a skate, respectively. Pentaloculum grahami n. sp. is described from a second genus of carpet shark, specifically Parascyllium collare, in Australia. Zyxibothrium duffyi n. sp. and Zyxibothrium healyae n. sp. are described from the deep-sea skates Brochiraja asperula and Brochiraja spinifera, respectively off New Zealand. The three new species share distinctive bothridia that bear a small number of large, circular, facial loculi and lateral bands of vitelline follicles that converge posterior to the ovary-features which are found in all other members of these genera. Zyxibothrium healyae n. sp. is unique in possessing three, rather than four or five, facial loculi. Zyxibothrium duffyi n. sp. possesses a combination of five facial loculi and vitelline follicles that stop short of the anterior margin of the proglottid. Pentaloculum grahami n. sp. is the largest member of the group with the greatest number of proglottids. Based on striking similarities in scolex morphology, Pentaloculum and Zyxibothrium have been hypothesized to belong to a distinct subgroup of "tetraphyllideans" provisionally designated as Clade 1. Based on sequence data for the D1-D3 region of the 28S rDNA gene generated for species of Zyxibothrium for the first time, we confirm the reciprocal monophyly of both genera as well as the monophyly of Clade 1 and its status as a distinct lineage among the "Tetraphyllidea". This work also suggests that the presence of five facial loculi is homoplasious given this character state is found in members of both genera. The new species expand the host associations of Clade 1 to include additional skate and carpet shark genera. Moving forward we would expect to find additional members of this group parasitizing other species of parascyliid carpet sharks as well as other species of the rajid genus Malacoraja and the arhynchobatid genus Brochiraja. Here we have doubled the number of described species in the taxon referred to as Clade 1 while simultaneously expanding our understanding of the morphology and anatomy of its members. This additional information will help inform the ultimate revision of the ordinal classification of the cestodes to address the highly polyphyletic nature of the order "Tetraphyllidea" as it is currently configured.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Tubarões , Rajidae , Feminino , Animais , Filogenia , Cestoides/genética , Cestoides/anatomia & histologia , Infecções por Cestoides/veterinária , Microscopia Eletrônica de Varredura
3.
Sci Adv ; 3(9): e1602422, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913417

RESUMO

Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a significantly higher potential to gain range in a changing climate, but we do find that ectoparasites (especially ticks) fare disproportionately worse than endoparasites. Accounting for host-driven coextinctions, models predict that up to 30% of parasitic worms are committed to extinction, driven by a combination of direct and indirect pressures. Despite high local extinction rates, parasite richness could still increase by an order of magnitude in some places, because species successfully tracking climate change invade temperate ecosystems and replace native species with unpredictable ecological consequences.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Extinção Biológica , Parasitos , Animais , Geografia
4.
J Parasitol ; 103(3): 268-284, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28350489

RESUMO

Much progress has recently been made in revising the taxonomic assignments of genera originally classified in the polyphyletic "Tetraphyllidea." Many of these genera, including Echeneibothrium, were accommodated in the order Rhinebothriidea. However, beyond this larger taxonomic action, little work has been conducted on this genus over the past 50 yr. Consequently, the criteria used for characterizing species of Echeneibothrium have lagged behind those typically used in more modern descriptions of elasmobranch-hosted cestode taxa. A series of collecting trips to Chile to obtain cestodes from the yellownose skate, Dipturus chilensis , provided a unique opportunity to apply modern morphological and molecular methods to investigate the 3 species of Echeneibothrium reported parasitizing this skate, specifically Echeneibothrium megalosoma, Echeneibothrium multiloculatum, and Echeneibothrium williamsi. In addition to redescribing all 3 species, using morphological data from light and scanning electron microscopy, maximum likelihood and bayesian inference phylogenetic analyses of the D1-D3 regions of the 28S rDNA gene were conducted to assess their relationships among other echeneibothriids for which comparable data are available. Sequencing of 59 specimens representing these 3 species of Echeneibothrium allowed us to assess the intra- and interspecific variation in the 28S rDNA gene. The redescriptions use standardized terminology for scolex morphology, proglottid anatomy, and microthrix forms and pattern; they also expand on the original descriptions to include data on scolex size, ovary size, vas deferens and vaginal configurations, testes arrangement, and genital pore position. Our morphological work led to a major reinterpretation of the scolex morphology with the recognition that all 3 species bear an apical bothridial sucker, rather than an apical loculus, prompting emendation of the diagnosis for the family Echeneibothriidae. The presence of a band of spinitriches at the apex of the apical modification of the scolex proper seems to represent an important feature for distinguishing the 2 portions of the myzorhynchus across species. Intraspecific variation ranged from 0 to 7 bp across species and interspecific variation ranged from a low of 39-46 bp between E. williamsi and E. multiloculatum to a high of 61-66 bp between E. multiloculatum and E. megalosoma. Phylogenetic analyses indicate that the 3 species of Echeneibothrium hosted by the yellownose skate are not each other's closest relatives, suggesting multiple colonization events of D. chilensis have occurred. Further phylogenetic investigation is also likely to confirm the status of the genus Pseudanthobothrium as a synonym of Echeneibothrium because its species generally group among members of Echeneibothrium.


Assuntos
Cestoides/classificação , Infecções por Cestoides/veterinária , Doenças dos Peixes/parasitologia , Rajidae/parasitologia , Animais , Cestoides/genética , Cestoides/ultraestrutura , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/parasitologia , Chile/epidemiologia , DNA de Helmintos/química , DNA de Helmintos/isolamento & purificação , DNA Ribossômico/química , Doenças dos Peixes/epidemiologia , Intestinos/parasitologia , Funções Verossimilhança , Microscopia Eletrônica de Varredura/veterinária , Oceano Pacífico/epidemiologia , Filogenia , Reação em Cadeia da Polimerase , Prevalência , RNA Ribossômico 28S/genética
5.
Conserv Biol ; 30(4): 724-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26400623

RESUMO

Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future.


Assuntos
Conservação dos Recursos Naturais , Interações Hospedeiro-Parasita , Parasitos , Animais , Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA