Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35464, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170347

RESUMO

The solar pyrolysis of materials has emerged as a promising technology for their efficient conversion into solid char, syngas and oil. The technology has its challenges, however, as constraints such as solar intermittence and scalability must be overcame for solar pyrolysis to thrive. The present work presents a review of the developments in solar pyrolysis considering a such as development by country, solar technology employed, etcetera. Moreover, details on the challenges and potential future developments are presented. It was found that most of the development in solar pyrolysis has been focused on waste-handling, and that a particular challenge exists in an adequate control system to achieve the desired end products.

2.
Mater Sci Eng C Mater Biol Appl ; 123: 112004, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812624

RESUMO

Nanostructured Zn1-xYbxO (0.0 ≤ x ≤ 0.1) powders were prepared by the solution method using polyvinyl alcohol (PVA) and sucrose. The effect of the ytterbium doping content on the structural, morphological, optical and antimicrobial properties was analyzed. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure was retained, and no secondary phases due to doping were observed. The crystallite size was under 20 nm for all the Zn1-xYbxO (0.0 ≤ x ≤ 0.1) powders. The optical band gap was calculated, and the results revealed that this value increased with the ytterbium content, and the Eg values varied from 3.06 to 3.10 eV. The surface chemistry of the powders was analyzed using X-ray photoelectron spectroscopy (XPS), and the results confirmed the oxidation state of ytterbium as 3+ for all the samples. Zn1-xYbxO (0.0 ≤ x ≤ 0.1) nanoparticles were tested as antimicrobial agents against Staphylococcus aureus and Escherichia coli, resulting in a potential antimicrobial effect at most of the tested concentrations. These results were used in an artificial neural network (ANN). The results showed that it is possible to generate a model capable of forecasting the absorbance with good precision (error of 1-2%).


Assuntos
Anti-Infecciosos , Nanopartículas , Óxido de Zinco , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Staphylococcus aureus , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA