Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 125: 108587, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579519

RESUMO

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. GR transcriptional activity is modulated by a series of ligands and coenzymes, where a ligand can act as an agonist or antagonist. GR agonists, such as the glucocorticoids dexamethasone (DEX) and prednisolone, are widely prescribed to patients with inflammatory and autoimmune diseases. DEX is also used to induce osteogenic differentiation in vitro. Recently, it has been highlighted that DEX induces changes in the osteogenic differentiation of human mesenchymal stromal cells by downregulating the transcription factor SRY-box transcription factor 9 (SOX9) and upregulating the peroxisome proliferator-activated receptor γ (PPARG). SOX9 is fundamental in the control of chondrogenesis, but also in osteogenesis by acting as a dominant-negative of RUNX2. Many processes remain to be clarified during cell fate determination, such as the interplay between the key transcription factors. The main objective pursued by this work is to shed light on the interaction between GR and SOX9 in the presence and absence of DEX at an atomic level of resolution using molecular dynamics simulations. The outcome of this research could help the understanding of possible molecular interactions between GR and SOX9 and their role in the determination of cell fate. The results highlight the key residues at the interface between GR and SOX9 involved in the complexation process and shed light on the mechanism through which DEX modulates GR-SOX9 binding and exerts its biological activity.


Assuntos
Dexametasona , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Dexametasona/farmacologia , Simulação de Dinâmica Molecular , Osteogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
2.
Bot Stud ; 64(1): 6, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36905471

RESUMO

BACKGROUND: The biodiversity of the mycobiota of soft cheese rinds such as Brie or Camembert has been extensively studied, but scant information is available on the fungi colonizing the rinds of cheese produced in the Southern Switzerland Alps. This study aimed at exploring the fungal communities present on rinds of cheese matured in five cellars in Southern Switzerland and to evaluate their composition with regards to temperature, relative humidity, type of cheese, as well as microenvironmental and geographic factors. We used macro- and microscopical morphology, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, and sequencing to characterize the fungal communities of the cheeses, and compared them with metabarcoding targeting the ITS region. RESULTS: Isolation by serial dilution yielded 201 isolates (39 yeasts and 162 filamentous fungi) belonging to 9 fungal species. Mucor and Penicillium were dominant, with Mucor racemosus, M. lanceolatus, P. biforme, and P. chrysogenum/rubens being the most frequent species. All but two yeast isolates were identified as Debaryomyces hansenii. Metabarcoding detected 80 fungal species. Culture work and metabarcoding produced comparable results in terms of similarity of the fungal cheese rind communities in the five cellars. CONCLUSIONS: Our study has shown that the mycobiota on the rinds of the cheeses studied is a comparatively species-poor community influenced by temperature, relative humidity, type of cheese, and manufacturing steps, as well as microenvironmental and possibly geographic factors.

3.
Front Microbiol ; 14: 1253009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163082

RESUMO

Introduction: Bioconvection, a phenomenon characterized by the collective upward swimming of motile microorganisms, has mainly been investigated within controlled laboratory settings, leaving a knowledge gap regarding its ecological implications in natural aquatic environments. This study aims to address this question by investigating the influence of bioconvection on the eco-physiology of the anoxygenic phototrophic sulfur bacteria community of meromictic Lake Cadagno. Methods: Here we comprehensively explore its effects by comparing the physicochemical profiles of the water column and the physiological traits of the main populations of the bacterial layer (BL). The search for eco-physiological effects of bioconvection involved a comparative analysis between two time points during the warm season, one featuring bioconvection (July) and the other without it (September). Results: A prominent distinction in the physicochemical profiles of the water column centers on light availability, which is significantly higher in July. This minimum threshold of light intensity is essential for sustaining the physiological CO2 fixation activity of Chromatium okenii, the microorganism responsible for bioconvection. Furthermore, the turbulence generated by bioconvection redistributes sulfides to the upper region of the BL and displaces other microorganisms from their optimal ecological niches. Conclusion: The findings underscore the influence of bioconvection on the physiology of C. okenii and demonstrate its functional role in improving its metabolic advantage over coexisting phototrophic sulfur bacteria. However, additional research is necessary to confirm these results and to unravel the multiscale processes activated by C. okenii's motility mechanisms.

4.
Br J Cancer ; 127(5): 788-799, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35501388

RESUMO

POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.


Assuntos
Mieloma Múltiplo , Complexo de Endopeptidases do Proteassoma , Schizosaccharomyces , Humanos , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transativadores/genética
5.
Sci Rep ; 11(1): 16275, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381075

RESUMO

Bioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.

6.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946412

RESUMO

Despite the huge body of research on osteogenic differentiation and bone tissue engineering, the translation potential of in vitro results still does not match the effort employed. One reason might be that the protocols used for in vitro research have inherent pitfalls. The synthetic glucocorticoid dexamethasone is commonly used in protocols for trilineage differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). However, in the case of osteogenic commitment, dexamethasone has the main pitfall of inhibiting terminal osteoblast differentiation, and its pro-adipogenic effect is well known. In this work, we aimed to clarify the role of dexamethasone in the osteogenesis of hBMSCs, with a particular focus on off-target differentiation. The results showed that dexamethasone does induce osteogenic differentiation by inhibiting SOX9 expression, but not directly through RUNX2 upregulation as it is commonly thought. Rather, PPARG is concomitantly and strongly upregulated, leading to the formation of adipocyte-like cells within osteogenic cultures. Limiting the exposure to dexamethasone to the first week of differentiation did not affect the mineralization potential. Gene expression levels of RUNX2, SOX9, and PPARG were simulated using approximate Bayesian computation based on a simplified theoretical model, which was able to reproduce the observed experimental trends but with a different range of responses, indicating that other factors should be integrated to fully understand how dexamethasone influences cell fate. In summary, this work provides evidence that current in vitro differentiation protocols based on dexamethasone do not represent a good model, and further research is warranted in this field.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , PPAR gama/metabolismo , Fatores de Transcrição SOX9/metabolismo , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , PPAR gama/genética , Fatores de Transcrição SOX9/genética
7.
PLoS One ; 16(3): e0248877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784327

RESUMO

The Swiss Alpine environments are poorly described from a microbiological perspective. Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-turquoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cadmium, which are highly unusual for the geomorphology of the region. Of particular interest, was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly composed of Cyanobacteria. A metagenome was further assembled to detail the genes found in this environment. A multitude of genes for resistance/tolerance to high heavy metal concentrations were indeed found, such as, various transport systems, and genes involved in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a central component in photosynthetic environments rich in heavy metals, for their ability to drive the sequestration of toxic, positively-charged metal ions under high regimes of cyanobacteria-driven photosynthesis. The results of this study provide a geochemical and microbiological description of this unusual environment in the southern Swiss Alps, the role of cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial community in bioremediation of metal-contaminated environments.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Metagenômica , Metais/análise , Rios/química , Bactérias/classificação , Bactérias/genética , Biodiversidade , Cor , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Genes Bacterianos , Fixação de Nitrogênio , Filogenia , Suíça , Água/química
8.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512460

RESUMO

Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.


Assuntos
Ecossistema , Lagos , Chlorobium , Chromatium , Enxofre
9.
Sci Data ; 7(1): 215, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636389

RESUMO

Society's demand for metals is ever increasing while stocks of high-grade minerals are being depleted. Biomining, for example of chalcopyrite for copper recovery, is a more sustainable biotechnological process that exploits the capacity of acidophilic microbes to catalyze solid metal sulfide dissolution to soluble metal sulfates. A key early stage in biomining is cell attachment and biofilm formation on the mineral surface that results in elevated mineral oxidation rates. Industrial biomining of chalcopyrite is typically carried out in large scale heaps that suffer from the downsides of slow and poor metal recoveries. In an effort to mitigate these drawbacks, this study investigated planktonic and biofilm cells of acidophilic (optimal growth pH < 3) biomining bacteria. RNA and proteins were extracted, and high throughput "omics" performed from a total of 80 biomining experiments. In addition, micrographs of biofilm formation on the chalcopyrite mineral surface over time were generated from eight separate experiments. The dataset generated in this project will be of great use to microbiologists, biotechnologists, and industrial researchers.


Assuntos
Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Metais/isolamento & purificação , Biologia de Sistemas , Ácidos/química , Proteínas de Bactérias/genética , Cobre/isolamento & purificação , RNA Bacteriano/genética
10.
BMC Bioinformatics ; 21(1): 23, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964336

RESUMO

BACKGROUND: Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. METHODS: We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. RESULTS: The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. CONCLUSIONS: The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteômica , Algoritmos , Bactérias/genética , Teorema de Bayes , Biologia Computacional/métodos , Simulação por Computador , Transdução de Sinais , Biologia de Sistemas/métodos
12.
Biotechnol Rep (Amst) ; 22: e00321, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949441

RESUMO

BACKGROUND: Deep neural networks have been successfully applied to diverse fields of computer vision. However, they only outperform human capacities in a few cases. METHODS: The ability of deep neural networks versus human experts to classify microscopy images was tested on biofilm colonization patterns formed on sulfide minerals composed of up to three different bioleaching bacterial species attached to chalcopyrite sample particles. RESULTS: A low number of microscopy images per category (<600) was sufficient for highly efficient computational analysis of the biofilm's bacterial composition. The use of deep neural networks reached an accuracy of classification of ∼90% compared to ∼50% for human experts. CONCLUSIONS: Deep neural networks outperform human experts' capacity in characterizing bacterial biofilm composition involved in the degradation of chalcopyrite. This approach provides an alternative to standard, time-consuming biochemical methods.

13.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076195

RESUMO

Industrial biomining processes are currently focused on metal sulfides and their dissolution, which is catalyzed by acidophilic iron(II)- and/or sulfur-oxidizing microorganisms. Cell attachment on metal sulfides is important for this process. Biofilm formation is necessary for seeding and persistence of the active microbial community in industrial biomining heaps and tank reactors, and it enhances metal release. In this study, we used a method for direct quantification of the mineral-attached cell population on pyrite or chalcopyrite particles in bioleaching experiments by coupling high-throughput, automated epifluorescence microscopy imaging of mineral particles with algorithms for image analysis and cell quantification, thus avoiding human bias in cell counting. The method was validated by quantifying cell attachment on pyrite and chalcopyrite surfaces with axenic cultures of Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans. The method confirmed the high affinity of L. ferriphilum cells to colonize pyrite and chalcopyrite surfaces and indicated that biofilm dispersal occurs in mature pyrite batch cultures of this species. Deep neural networks were also applied to analyze biofilms of different microbial consortia. Recent analysis of the L. ferriphilum genome revealed the presence of a diffusible soluble factor (DSF) family quorum sensing system. The respective signal compounds are known as biofilm dispersal agents. Biofilm dispersal was confirmed to occur in batch cultures of L. ferriphilum and S. thermosulfidooxidans upon the addition of DSF family signal compounds.IMPORTANCE The presented method for the assessment of mineral colonization allows accurate relative comparisons of the microbial colonization of metal sulfide concentrate particles in a time-resolved manner. Quantitative assessment of the mineral colonization development is important for the compilation of improved mathematical models for metal sulfide dissolution. In addition, deep-learning algorithms proved that axenic or mixed cultures of the three species exhibited characteristic biofilm patterns and predicted the biofilm species composition. The method may be extended to the assessment of microbial colonization on other solid particles and may serve in the optimization of bioleaching processes in laboratory scale experiments with industrially relevant metal sulfide concentrates. Furthermore, the method was used to demonstrate that DSF quorum sensing signals directly influence colonization and dissolution of metal sulfides by mineral-oxidizing bacteria, such as L. ferriphilum and S. thermosulfidooxidans.


Assuntos
Automação Laboratorial/métodos , Bactérias/metabolismo , Aderência Bacteriana , Metais/metabolismo , Microscopia/métodos , Sulfetos/metabolismo , Acidithiobacillus/metabolismo , Algoritmos , Automação Laboratorial/instrumentação , Biofilmes/crescimento & desenvolvimento , Cobre/metabolismo , Ferro/metabolismo , Consórcios Microbianos , Enxofre/metabolismo
14.
BMC Cancer ; 18(1): 569, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776351

RESUMO

BACKGROUND: The smoothened (SMO) receptor is an essential component of the Sonic hedgehog (SHH) signalling, which is associated with the development of skin basal cell carcinoma (BCC). SMO inhibitors are indicated for BCC patients when surgical treatment or radiation therapy are not possible. Unfortunately, SMO inhibitors are not always well tolerated due to severe side effects, and their therapeutical success is limited by resistance mutations. METHODS: We investigated how common are resistance-causing mutations in two genomic databases which are not linked to BCC or other cancers, namely 1000 Genomes and ExAC. To examine the potential for combination therapy or other treatments, we further performed knowledge-based simulations of SHH signalling, in the presence or absence of SMO and PI3K/Akt inhibitors. RESULTS: The database analysis revealed that of 18 known mutations associated with Vismodegib-resistance, three were identified in the databases. Treatment of individuals carrying such mutations is thus liable to fail a priori. Analysis of the simulations suggested that a combined inhibition of SMO and the PI3K/Akt signalling pathway may provide an effective reduction in tumour proliferation. However, the inhibition dosage of SMO and PI3K/Akt depended on the activity of phosphodiesterases (PDEs). Under high PDEs activities, SMO became the most important control node of the network. By applying PDEs inhibition, the control potential of SMO decreased and PI3K appeared as a significant factor in controlling tumour proliferation. CONCLUSIONS: Our systems biology approach employs knowledge-based computer simulations to help interpret the large amount of data available in public databases, and provides application-oriented solutions for improved cancer resistance treatments.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Proteínas Hedgehog/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Anilidas/farmacologia , Anilidas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Biologia Computacional , Simulação por Computador , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfodiesterase/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Diester Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo
15.
BMC Bioinformatics ; 19(1): 155, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29699481

RESUMO

BACKGROUND: Mutations in the FMS-like tyrosine kinase 3 (FLT3) are associated with uncontrolled cellular functions that contribute to the development of acute myeloid leukaemia (AML). We performed computer simulations of the FLT3-dependent signalling network in order to study the pathways that are involved in AML development and resistance to targeted therapies. RESULTS: Analysis of the simulations revealed the presence of alternative pathways through phosphoinositide 3 kinase (PI3K) and SH2-containing sequence proteins (SHC), that could overcome inhibition of FLT3. Inhibition of cyclin dependent kinase 6 (CDK6), a related molecular target, was also tested in the simulation but was not found to yield sufficient benefits alone. CONCLUSIONS: The PI3K pathway provided a basis for resistance to treatments. Alternative signalling pathways could not, however, restore cancer growth signals (proliferation and loss of apoptosis) to the same levels as prior to treatment, which may explain why FLT3 resistance mutations are the most common resistance mechanism. Finally, sensitivity analysis suggested the existence of optimal doses of FLT3 and CDK6 inhibitors in terms of efficacy and toxicity.


Assuntos
Simulação por Computador , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/normas , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Transdução de Sinais/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/genética
16.
Biochem Mol Biol Educ ; 46(1): 58-65, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131508

RESUMO

We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δr G, Δr H, and Δr S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018.


Assuntos
Bioquímica/educação , Técnicas Eletroquímicas/instrumentação , Laboratórios , Software , Estudantes , Humanos , Aprendizagem , Termodinâmica
17.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150517

RESUMO

Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCELeptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.


Assuntos
Bactérias/genética , Genoma Bacteriano , Ferro/metabolismo , Proteoma , RNA Bacteriano/genética , Transcriptoma , Bactérias/classificação , Bactérias/metabolismo , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , Proteômica , RNA Bacteriano/metabolismo
18.
Front Microbiol ; 9: 3059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631311

RESUMO

Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial interest is steadily increasing and today, circa 15-20% of the world's copper production can be traced back to this method. However, bioleaching of the world's most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans' weaker iron oxidation to be studied in the future, as well as underlined the need for new mechanisms to control the microbial population in bioleaching heaps.

19.
PLoS One ; 11(9): e0163011, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27669408

RESUMO

A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance.

20.
Microbiology (Reading) ; 162(8): 1422-1434, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230583

RESUMO

Extremely acidophilic microorganisms (optimum growth pH of ≤3) maintain a near neutral cytoplasmic pH via several homeostatic mechanisms, including an inside positive membrane potential created by potassium ions. Transcriptomic responses to pH stress in the thermoacidophilic archaeon, Sulfolobus acidocaldarius were investigated by growing cells without added sodium and/or potassium ions at both optimal and sub-optimal pH. Culturing the cells in the absence of added sodium or potassium ions resulted in a reduced growth rate compared to full-salt conditions as well as 43 and 75 significantly different RNA transcript ratios, respectively. Differentially expressed RNA transcripts during growth in the absence of added sodium ions included genes coding for permeases, a sodium/proline transporter and electron transport proteins. In contrast, culturing without added potassium ions resulted in higher RNA transcripts for similar genes as a lack of sodium ions plus genes related to spermidine that has a general role in response to stress and a decarboxylase that potentially consumes protons. The greatest RNA transcript response occurred when S. acidocaldarius cells were grown in the absence of potassium and/or sodium at a sub-optimal pH. These adaptations included those listed above plus osmoregulated glucans and mechanosensitive channels that have previously been shown to respond to osmotic stress. In addition, data analyses revealed two co-expressed IclR family transcriptional regulator genes with a previously unknown role in the S. acidocaldarius pH stress response. Our study provides additional evidence towards the importance of potassium in acidophile growth at acidic pH.


Assuntos
Potássio/metabolismo , Sódio/metabolismo , Sulfolobus acidocaldarius/crescimento & desenvolvimento , Sulfolobus acidocaldarius/metabolismo , Proteínas de Transporte/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Mecanorreceptores/fisiologia , Pressão Osmótica/fisiologia , Espermidina/metabolismo , Sulfolobus acidocaldarius/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...