Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312948

RESUMO

Summary: Human immunodeficiency virus (HIV) remains a public health threat, with drug resistance being a major concern in HIV treatment. Next-generation sequencing (NGS) is a powerful tool for identifying low-abundance drug resistance mutations (LA-DRMs) that conventional Sanger sequencing cannot reliably detect. To fully understand the significance of LA-DRMs, it is necessary to integrate NGS data with clinical and demographic data. However, freely available tools for NGS-based HIV-1 drug resistance analysis do not integrate these data. This poses a challenge in interpretation of the impact of LA-DRMs, mainly for resource-limited settings due to the shortage of bioinformatics expertise. To address this challenge, we present HIVseqDB, a portable, secure, and user-friendly resource for integrating NGS data with associated clinical and demographic data for analysis of HIV drug resistance. HIVseqDB currently supports uploading of NGS data and associated sample data, HIV-1 drug resistance data analysis, browsing of uploaded data, and browsing and visualizing of analysis results. Each function of HIVseqDB corresponds to an individual Django application. This ensures efficient incorporation of additional features with minimal effort. HIVseqDB can be deployed on various computing environments, such as on-premises high-performance computing facilities and cloud-based platforms. Availability and implementation: HIVseqDB is available at https://github.com/AlfredUg/HIVseqDB. A deployed instance of HIVseqDB is available at https://hivseqdb.org.

2.
Microbiol Spectr ; 10(4): e0151422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35766497

RESUMO

Based on its predicted ability to affect transmissibility and pathogenesis, surveillance studies have highlighted the role of a specific mutation (P681R) in the S1/S2 furin cleavage site of the SARS-CoV-2 spike protein. Here we analyzed A.23.1, first identified in Uganda, as a P681R-containing virus several months prior to the emergence of B.1.617.2 (Delta variant). We performed assays using peptides mimicking the S1/S2 from A.23.1 and B.1.617 and observed significantly increased cleavability with furin compared to both an original B lineage (Wuhan-Hu1) and B.1.1.7 (Alpha variant). We also performed cell-cell fusion and functional infectivity assays using pseudotyped particles and observed an increase in activity for A.23.1 compared to an original B lineage spike. However, these changes in activity were not reproduced in the B lineage spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, this substitution needs to occur on the background of other spike protein changes to enable its functional consequences. IMPORTANCE During the course of the SARS-CoV-2 pandemic, viral variants have emerged that often contain notable mutations in the spike gene. Mutations that encode changes in the spike S1/S2 (furin) activation site have been considered especially impactful. The S1/S2 change from proline to arginine at position 681 (P681R) first emerged in the A.23.1 variant in Uganda, and subsequently occurred in the more widely transmitted Delta variant. We show that the A.23.1 spike is more readily activated by the host cell protease furin, but that this is not reproduced in an original SARS-CoV-2 spike containing the P681R mutation. Changes to the S1/S2 (furin) activation site play a role in SARS-CoV-2 infection and spread, but successful viruses combine these mutations with other less well identified changes, occurring as part of natural selection.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/virologia , Furina/genética , Furina/metabolismo , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Uganda
3.
bioRxiv ; 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-34230931

RESUMO

The African continent like all other parts of the world with high infection/low vaccination rates can, and will, be a source of novel SARS-CoV-2 variants. The A.23 viral lineage, characterized by three spike mutations F157L, V367F and Q613H, was first identified in COVID-19 cases from a Ugandan prison in July 2020, and then was identified in the general population with additional spike mutations (R102I, L141F, E484K and P681R) to comprise lineage A.23.1 by September 2020, with this virus being designated a variant of interest (VOI) in Africa and with subsequent spread to 26 other countries. The P681R spike substitution of the A.23.1 VOI is of note as it increases the number of basic residues in the sub-optimal SARS-CoV-2 spike protein furin cleavage site; as such, this substitution may affect viral replication, transmissibility or pathogenic properties. The same P681R substitution has also appeared in B.1.617 variants, including B.1.617.2 (Delta). Here, we performed assays using fluorogenic peptides mimicking the S1/S2 sequence from A.23.1 and B.1.617.2 and observed significantly increased cleavability with furin, compared to sequences derived from the original Wuhan-Hu1 S1/S2. We performed functional infectivity assays using pseudotyped MLV particles harboring SARS-CoV-2 spike proteins and observed an increase in transduction for A.23.1-pseudotyped particles compared to Wuhan-Hu-1 in Vero-TMPRSS2 and Calu-3 cells (with a presumed early entry pathway), although lowered infection in Vero E6 cells (with a presumed late entry pathway). However, these changes in infectivity were not reproduced in the original Wuhan-Hu-1 spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, which may affect viral infection and transmissibility, this substitution alone is not sufficient and needs to occur on the background of other spike protein changes to enable its full functional consequences.

4.
Bioinform Adv ; 2(1): vbac089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699347

RESUMO

Summary: Next-generation sequencing (NGS) enables reliable detection of resistance mutations in minority variants of human immunodeficiency virus type 1 (HIV-1). There is paucity of evidence for the association of minority resistance to treatment failure, and this requires evaluation. However, the tools for analyzing HIV-1 drug resistance (HIVDR) testing data are mostly web-based which requires uploading data to webservers. This is a challenge for laboratories with internet connectivity issues and instances with restricted data transfer across networks. We present QuasiFlow, a pipeline for reproducible analysis of NGS-based HIVDR testing data across different computing environments. Since QuasiFlow entirely depends on command-line tools and a local copy of the reference database, it eliminates challenges associated with uploading HIV-1 NGS data onto webservers. The pipeline takes raw sequence reads in FASTQ format as input and generates a user-friendly report in PDF/HTML format. The drug resistance scores obtained using QuasiFlow were 100% and 99.12% identical to those obtained using web-based HIVdb program and HyDRA web respectively at a mutation detection threshold of 20%. Availability and implementation: QuasiFlow and corresponding documentation are publicly available at https://github.com/AlfredUg/QuasiFlow. The pipeline is implemented in Nextflow and requires regular updating of the Stanford HIV drug resistance interpretation algorithm. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

5.
AIDS Res Hum Retroviruses ; 36(9): 782-791, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32475121

RESUMO

HIV drug resistance (HIVDR) is of increasing health concern, especially among key populations. We investigated the prevalence of virological suppression (VS), prevalence and correlates of HIVDR in HIV-infected women, enrolled in a high-risk cohort. We enrolled 267 women initiated on first-line antiretroviral therapy (ART) between 2015 and 2018. Participants' plasma samples were analyzed for HIV RNA viral load (VL) and genotypic resistance testing was performed on those with VL nonsuppression (defined as VL ≥1,000 copies/mL). We used the Stanford HIVDR database-algorithm to assess HIVDR mutations and logistic regression to assess risk factors for VL nonsuppression and HIVDR. We observed an overall VS prevalence of 76.0% (203/267) and detected respective acquired drug resistance prevalence to non-nucleoside reverse transcriptase inhibitors (NNRTIs) and nucleoside reverse transcriptase inhibitors (NRTIs) of 81.3% [confidence interval (CI) 67.4-91.1] and 45.8% (CI 31.4-60.8) among the 48 successfully genotyped VL nonsuppressors. NNRTI mutations were observed in 81.3% (39/48) of the genotyped participants and 45.8% (22/48) had both NRTI and NNRTI mutations. The mutation K103N was detected in 62.5% (30/48) of participants, 41.7% (20/48) had M184V/I, 14.6% had K65R, and 12.5% (6/48) had thymidine analog mutations (TAMs). None of the analyzed potential risk factors, including age and duration on ART, was significantly correlated with VL nonsuppression or HIVDR. Although high levels of NNRTI mutations support the transition to dolutegravir, the presence of NRTI mutations, especially TAMs, may compromise dolutegravir-based regimens or other second-line ART options. The moderate VS prevalence and high HIVDR prevalence therefore call for timely ART switching and intensive adherence counseling.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , HIV-1/genética , Humanos , Mutação , Falha de Tratamento , Uganda/epidemiologia , Carga Viral
6.
AIDS Res Hum Retroviruses ; 32(3): 237-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26548707

RESUMO

Control of HIV replication through CD4(+) and CD8(+) T cells might be possible, but the functional and phenotypic characteristics of such cells are not defined. Among cytokines produced by T cells, CCR5 ligands, including macrophage inflammatory protein-1 beta (MIP-1ß), compete for the CCR5 coreceptor with HIV, promoting CCR5 internalization and decreasing its availability for virus binding. Interferon (IFN)-γ also has some antiviral activity and has been used as a read-out for T cell immunogenicity. We used cultured ELISpot assays to compare the relative contribution of MIP-1ß and IFN-γ to HIV-specific responses. The magnitude of responses was 1.36 times higher for MIP-1ß compared to IFN-γ. The breadth of the MIP-1ß response (45.41%) was significantly higher than IFN-γ (36.88%), with considerable overlap between the peptide pools that stimulated both MIP-1ß and IFN-γ production. Subtype A and D cross-reactive responses were observed both at stimulation and test level, but MIP-1ß and IFN-γ responses displayed different effect patterns. We conclude that the MIP-1ß ELISpot would be a useful complement to the evaluation of the immunogenicity of HIV vaccines and the activity of adjuvants.


Assuntos
Quimiocina CCL4/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Adolescente , Adulto , Células Cultivadas , ELISPOT , Feminino , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...