Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 111: 186-195, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38744351

RESUMO

PURPOSE: To determine the significance of complex-valued inputs and complex-valued convolutions compared to real-valued inputs and real-valued convolutions in convolutional neural networks (CNNs) for frequency and phase correction (FPC) of GABA-edited magnetic resonance spectroscopy (MRS) data. METHODS: An ablation study using simulated data was performed to determine the most effective input (real or complex) and convolution type (real or complex) to predict frequency and phase shifts in GABA-edited MEGA-PRESS data using CNNs. The best CNN model was subsequently compared using both simulated and in vivo data to two recently proposed deep learning (DL) methods for FPC of GABA-edited MRS. All methods were trained using the same experimental setup and evaluated using the signal-to-noise ratio (SNR) and linewidth of the GABA peak, choline artifact, and by visually assessing the reconstructed final difference spectrum. Statistical significance was assessed using the Wilcoxon signed rank test. RESULTS: The ablation study showed that using complex values for the input represented by real and imaginary channels in our model input tensor, with complex convolutions was most effective for FPC. Overall, in the comparative study using simulated data, our CC-CNN model (that received complex-valued inputs with complex convolutions) outperformed the other models as evaluated by the mean absolute error. CONCLUSION: Our results indicate that the optimal CNN configuration for GABA-edited MRS FPC uses a complex-valued input and complex convolutions. Overall, this model outperformed existing DL models.

2.
MAGMA ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613715

RESUMO

PURPOSE: Use a conference challenge format to compare machine learning-based gamma-aminobutyric acid (GABA)-edited magnetic resonance spectroscopy (MRS) reconstruction models using one-quarter of the transients typically acquired during a complete scan. METHODS: There were three tracks: Track 1: simulated data, Track 2: identical acquisition parameters with in vivo data, and Track 3: different acquisition parameters with in vivo data. The mean squared error, signal-to-noise ratio, linewidth, and a proposed shape score metric were used to quantify model performance. Challenge organizers provided open access to a baseline model, simulated noise-free data, guides for adding synthetic noise, and in vivo data. RESULTS: Three submissions were compared. A covariance matrix convolutional neural network model was most successful for Track 1. A vision transformer model operating on a spectrogram data representation was most successful for Tracks 2 and 3. Deep learning (DL) reconstructions with 80 transients achieved equivalent or better SNR, linewidth and fit error compared to conventional 320 transient reconstructions. However, some DL models optimized linewidth and SNR without actually improving overall spectral quality, indicating a need for more robust metrics. CONCLUSION: DL-based reconstruction pipelines have the promise to reduce the number of transients required for GABA-edited MRS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...