Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33918986

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.

2.
Toxics ; 8(3)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867022

RESUMO

Recent research has helped clarify the role of cadmium (Cd) in various pathological states. We have demonstrated Cd involvement in pancreatic cancer, as well as the bioaccumulation of Cd in the pancreas. Bioaccumulation and increased toxicity suggest that Cd may also be involved in other pancreas-mediated diseases, like diabetes. Cd falls into the category of "hyperglycemic" metals, i.e., metals that increase blood glucose levels, which could be due to increased gluconeogenesis, damage to ß-cells leading to reduced insulin production, or insulin resistance at target tissue resulting in a lack of glucose uptake. This review addresses the current evidence for the role of Cd, leading to insulin resistance from human, animal, and in vitro studies. Available data have shown that Cd may affect normal insulin function through multiple pathways. There is evidence that Cd exposure results in the perturbation of the enzymes and modulatory proteins involved in insulin signal transduction at the target tissue and mutations of the insulin receptor. Cd, through well-described mechanisms of oxidative stress, inflammation, and mitochondrial damage, may also alter insulin production in ß-cells. More work is necessary to elucidate the mechanisms associated with Cd-mediated insulin resistance.

3.
J Clin Med ; 9(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726998

RESUMO

Neurological disorders such as neurodegenerative diseases or traumatic brain injury are associated with cognitive, motor and behavioural changes that influence the quality of life of the patients. Although different therapeutic strategies have been developed and tried until now to decrease the neurological decline, no treatment has been found to cure these pathologies. In the last decades, the implication of the endocannabinoid system in the neurological function has been extensively studied, and the cannabinoids have been tried as a new promising potential treatment. In this study, we aimed to overview the recent available literature regarding in vivo potential of natural and synthetic cannabinoids with underlying mechanisms of action for protecting against cognitive decline and motor impairments. The results of studies on animal models showed that cannabinoids in traumatic brain injury increase neurobehavioral function, working memory performance, and decrease the neurological deficit and ameliorate motor deficit through down-regulation of pro-inflammatory markers, oedema formation and blood-brain barrier permeability, preventing neuronal cell loss and up-regulating the levels of adherence junction proteins. In neurodegenerative diseases, the cannabinoids showed beneficial effects in decreasing the motor disability and disease progression by a complex mechanism targeting more signalling pathways further than classical receptors of the endocannabinoid system. In light of these results, the use of cannabinoids could be beneficial in traumatic brain injuries and multiple sclerosis treatment, especially in those patients who display resistance to conventional treatment.

4.
Food Chem Toxicol ; 143: 111558, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640331

RESUMO

Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.


Assuntos
Dieta com Restrição de Carboidratos , Ácidos Graxos Insaturados/efeitos adversos , Inflamação/etiologia , Doenças não Transmissíveis , Polifenóis/efeitos adversos , Animais , Dieta Mediterrânea , Fibras na Dieta/administração & dosagem , Exercício Físico/fisiologia , Ácidos Graxos Insaturados/administração & dosagem , Humanos , Inflamação/epidemiologia , Inflamação/prevenção & controle , Doenças não Transmissíveis/epidemiologia , Polifenóis/uso terapêutico
5.
Toxicol Rep ; 7: 637-648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489905

RESUMO

Living organisms have an innate ability to regulate the synthesis of inorganic materials, such as bones and teeth in humans. Cadmium sulfide (CdS) can be utilized as a quantum dot that functions as a unique light-emitting semiconductor nanocrystal. The increased use in CdS has led to an increased inhalation and ingestion rate of CdS by humans which requires a broader appreciation for the acute and chronic toxicity of CdS. We investigated the toxic effects of CdS on cerebellar cell cultures and rat brain. We employed a 'green synthesis' biosynthesis process to obtain biocompatible material that can be used in living organisms, such as Viridibacillus arenosi K64. Nanocrystal formation was initiated by adding CdCl2 (1 mM) to the cell cultures. Our in vitro results established that increased concentrations of CdS (0.1 µg/mL) lead to decreased cell viability as assessed using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), total antioxidant capacity (TAC), and total oxidant status (TOS). The in vivo studies showed that exposure to CdS (1 mg/kg) glial fibrillary acidic protein (GFAP) and 8-hydroxy-2' -deoxyguanosine (8-OHdG) were increased. Collectively, we describe a model system that addresses the process from the synthesis to the neurotoxicity assessment for CdS both in vitro and in vivo. These data will be beneficial in establishing a more comprehensive pathway for the understanding of quantum dot-induced neurotoxicity.

6.
Antioxidants (Basel) ; 9(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106613

RESUMO

The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32079163

RESUMO

Tauopathies are a disease group characterized by either pathological accumulation or release of fragments of hyperphosphorylated tau proteins originating from the central nervous system. The tau hypotheses of Parkinson's and Alzheimer's diseases contain a clinically diverse spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype characteristics of the disease. In addition, improved understanding of different tauopathies would disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the progression of the disorder. Important for diagnostics and monitoring of these disorders is a further development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to provide an in-depth review of the current literature regarding the pathophysiological roles of tau proteins and the pathogenic factors leading to various tauopathies, with the perspective of future advances in potential therapeutic strategies.


Assuntos
Doença de Alzheimer , Tauopatias , Xenobióticos , Doença de Alzheimer/induzido quimicamente , Humanos , Metais , Tauopatias/induzido quimicamente , Xenobióticos/toxicidade , Proteínas tau
8.
Environ Sci Pollut Res Int ; 27(1): 751-760, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31811606

RESUMO

According to the World Health Organization, in 2015, the Serbian population ranked among the highest ones in Europe in terms of smoking habit: 44.3% males and 36.2% females aged 18-64 smoked tobacco. In the last 7 years, 25% of total mortality in men and 9% in women from Serbia were associated with smoking. Tobacco smoking is one of the most important sources of exposure to many toxic substances in general population. Our study confirmed higher blood levels of two toxic metals, cadmium and lead, in the blood of smokers (3.5 and 1.5 times higher than in non-smokers, respectively). Furthermore, smoking habits, such as number of smoked cigarettes per day, smoking period and cigarette type, along with age, were shown to influence these metals' blood concentration. Higher blood levels of Cd and Pb were found in smokers consuming more than 10 cigarettes per day for more than 10 years. The present study also highlighted the importance of the controlled tobacco production, since it was shown that consumption of illicit tobacco could manifold the exposure to toxic metals that can subsequently increase the frequency of related diseases as well.


Assuntos
Cádmio/sangue , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue , Chumbo/sangue , Fumar/epidemiologia , Adolescente , Adulto , Idoso , Cádmio/análise , Feminino , Hábitos , Humanos , Masculino , Pessoa de Meia-Idade , Sérvia/epidemiologia , Fumar/sangue , Produtos do Tabaco , Fumar Tabaco , Adulto Jovem
9.
Cell Mol Biol (Noisy-le-grand) ; 65(7): 15-20, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31880533

RESUMO

Ampelopsin or Dihydromyricetin is gradually emerging as a high-quality natural product because of its ability to modulate wide-ranging signaling pathways. Ampelopsin (Dihydromyricetin) has been reported to effectively modulate growth factor receptor (VEGFR2 and PDGFRß) mediated signaling,  TRAIL/TRAIL-R pathway, JAK/STAT and mTOR-driven signaling in different cancers. Ampelopsin (Dihydromyricetin) has also been shown to exert inhibitory effects on the versatile regulators which trigger EMT (Epithelial-to-Mesenchymal Transition). Findings obtained from in-vitro studies are encouraging and there is a need to comprehensively analyze how Ampelopsin (Dihydromyricetin) inhibits tumor growth in different cancer models. Better knowledge of efficacy of Ampelopsin (Dihydromyricetin) in tumor bearing mice will be helpful in maximizing its translational potential.


Assuntos
Flavonoides/metabolismo , Flavonóis/metabolismo , Neoplasias/metabolismo , Animais , Apoptose , Humanos , Transdução de Sinais
10.
Arch Toxicol ; 93(10): 2741-2757, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520250

RESUMO

Humans are exposed to multiple chemicals on a daily basis instead of to just a single chemical, yet the majority of existing toxicity data comes from single-chemical exposure. Multiple factors must be considered such as the route, concentration, duration, and the timing of exposure when determining toxicity to the organism. The need for adequate model systems (in vivo, in vitro, in silico and mathematical) is paramount for better understanding of chemical mixture toxicity. Currently, shortcomings plague each model system as investigators struggle to find the appropriate balance of rigor, reproducibility and appropriateness in mixture toxicity studies. Significant questions exist when comparing single-to mixture-chemical toxicity concerning additivity, synergism, potentiation, or antagonism. Dose/concentration relevance is a major consideration and should be subthreshold for better accuracy in toxicity assessment. Previous work was limited by the technology and methodology of the time, but recent advances have resulted in significant progress in the study of mixture toxicology. Novel technologies have added insight to data obtained from in vivo studies for predictive toxicity testing. These include new in vitro models: omics-related tools, organs-on-a-chip and 3D cell culture, and in silico methods. Taken together, all these modern methodologies improve the understanding of the multiple toxicity pathways associated with adverse outcomes (e.g., adverse outcome pathways), thus allowing investigators to better predict risks linked to exposure to chemical mixtures. As technology and knowledge advance, our ability to harness and integrate separate streams of evidence regarding outcomes associated with chemical mixture exposure improves. As many national and international organizations are currently stressing, studies on chemical mixture toxicity are of primary importance.


Assuntos
Segurança Química/métodos , Medição de Risco/métodos , Testes de Toxicidade/métodos , Animais , Simulação por Computador , Exposição Ambiental/efeitos adversos , Humanos , Modelos Biológicos , Modelos Teóricos , Reprodutibilidade dos Testes
11.
Environ Res ; 176: 108539, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31247431

RESUMO

Exposure to cadmium (Cd) is recognised as one of the risk factors for osteoporosis, although critical exposure levels and exact mechanisms are still unknown. Here, we first confirmed that in male Wistar rats challenged orally with 6 different levels of Cd (0.3-10 mg/kg b.w.), over 28 days, there was a direct dose relationship to bone Cd concentration. Moreover, bone mineral content was significantly diminished by ∼15% (p < 0.0001) plateauing already at the lowest exposure level. For the other essential bone elements zinc (Zn) loss was most marked. Having established the sensitive metrics (measures of Cd exposure), we then applied them to 20 randomly selected human femoral head bone samples from 16 independent subjects. Bone Cd concentration was inversely proportional to trabecular bone mineral density and mineral (calcium) content and Zn content of bone, but not the donor's age. Our findings, through direct bone analyses, support the emerging epidemiological view that bone health, adjudged by mineral density, is extremely sensitive to even background levels of environmental Cd. Importantly, however, our data also suggest that Cd may play an even greater role in compromised bone health than prior indirect estimates of exposure could reveal. Environmental Cd may be a substantially determining factor in osteoporosis and large cohort studies with direct bone analyses are now merited.


Assuntos
Densidade Óssea/efeitos dos fármacos , Cádmio/toxicidade , Exposição Ambiental , Animais , Osso e Ossos , Humanos , Masculino , Minerais , Ratos , Ratos Wistar
12.
Environ Int ; 128: 353-361, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078004

RESUMO

Although profoundly studied, etiology of pancreatic cancer (PC) is still rather scarce. Some of established risk factors of PC are connected to an increased cadmium (Cd) body burden. Hence, the aim of this study was to investigate the role of this environmental pollutant in PC development by conducting human observational, experimental and in vitro studies. The case-control study included 31 patients with a histologically based diagnosis of exocrine PC subjected to radical surgical intervention as cases and 29 accidental fatalities or subjects who died of a nonmalignant illness as controls. Animal study included two treated groups of Wistar rats (15 and 30 mg Cd/kg b.w) and untreated control group, sacrificed 24 h after single oral exposure. In in vitro study pancreas hTERT-HPNE and AsPC-1 cells were exposed to different Cd concentrations corresponding to levels measured in human cancerous pancreatic tissue. Cd content in cancer tissue significantly differed from the content in healthy controls. Odds ratio levels for PC development were 2.79 (95% CI 0.91-8.50) and 3.44 (95% CI 1.19-9.95) in the third and fourth quartiles of Cd distribution, respectively. Animal study confirmed Cd deposition in pancreatic tissue. In vitro studies revealed that Cd produces disturbances in intrinsic pathway of apoptotic activity and the elevation in oxidative stress in pancreatic cells. This study presents three different lines of evidence pointing towards Cd as an agent responsible for the development of PC.


Assuntos
Cádmio/metabolismo , Exposição Ambiental/análise , Pâncreas/química , Adulto , Idoso , Animais , Cádmio/toxicidade , Estudos de Casos e Controles , Linhagem Celular , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/induzido quimicamente , Ratos , Ratos Wistar , Sérvia
13.
Food Chem Toxicol ; 127: 260-269, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30898530

RESUMO

Health benefits of fish consumption could be counterbalanced by the intake of contaminants after long term fish consumption, burdened even in trace levels. The presence of the indicator PCBs (NDL-PCBs and PCB 118) in farmed and wild seabream and seabass was evaluated. For the determination of PCB, a GC-MS method was developed and evaluated. The association of PCB accumulation in fish with seasonality, locality, production mode and species was also investigated. A new approach for the risk characterisation after exposure to NDL-PCB through fish consumption in Greece was developed, based on the real exposure and the permitted maximum levels of both aggregated dietary exposure and exposure through fish consumption. PCB levels determined in fish were below established permitted limits (6.24 ng/g 95th percentile), while PCB levels and congener distribution varied significantly between farmed and wild fish (p = 0.001). Seasonality was highlighted as an important factor affecting NDL-PCBs accumulation, with high levels coinciding with the reproduction period of each species. Differences were also depicted for sampling sites, with PCB 118 presenting significantly higher values in open seas while NDL-PCB congeners in closed seas. Risk assessment of NDL-PCB intake through fish consumption corrected for the aggregated exposure revealed no risk for the consumers.


Assuntos
Aquicultura , Exposição Dietética , Peixes , Contaminação de Alimentos/análise , Bifenilos Policlorados/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Cromatografia Gasosa-Espectrometria de Massas , Grécia , Humanos , Limite de Detecção , Lipídeos/análise , Reprodutibilidade dos Testes , Medição de Risco , Estações do Ano
14.
Cell Mol Biol (Noisy-le-grand) ; 65(8): 7-10, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-32133979

RESUMO

Reconceptualization of different anesthetics as anticancer agents has opened new horizons for a better and sharper analysis of true potential of Sevoflurane as a promising and frontline candidate in the pipeline of anticancer agents. Sevoflurane mediated regulation of cell signaling pathways and non-coding RNAs has leveraged our understanding to another level. There have been remarkable advancements in unraveling mechanistic insights related to the ability of sevoflurane to modulate microRNAs in different cancers. Astonishingly, sevoflurane mediated regulation of miRNAs and long non-coding RNAs have been more comprehensively addressed in ischemia-reperfusion injuries. However, researchers yet have to gather missing pieces of premium research-work to uncover mechanistic regulation of long non-coding RNAs by sevoflurane in various cancers. Sevoflurane modulated control of miRNAs have been reported in glioma, colorectal cancer, breast cancer and hepatocellular carcinoma. In this review we have attempted to summarize most recent cutting edge and high-impact experimental researches which have elucidated myriad of underlying mechanisms modulated by sevoflurane to inhibit cancer development and progression. Despite some of the amazing pharmacological properties of sevoflurane, it has been shown to possess darker side because of its involvement in positive regulation of metastasis.  In accordance with this notion we have also summarized how sevoflurane enhanced migratory potential of different cancer cells in a separate section. Therefore, these aspects have to be tested in better designed experimental models to identify most relevant types of cancers which can be therapeutically targeted by sevoflurane.


Assuntos
Anestésicos/farmacologia , MicroRNAs/metabolismo , Neoplasias/patologia , Sevoflurano/farmacologia , Transdução de Sinais/efeitos dos fármacos , Anestésicos/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , RNA não Traduzido/metabolismo , Sevoflurano/uso terapêutico , Quinases Associadas a rho/metabolismo
15.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772829

RESUMO

Humans are exposed to a significant number of chemicals that are suspected to produce disturbances in hormone homeostasis. Hence, in recent decades, there has been a growing interest in endocrine disruptive chemicals. One of the alleged thyroid disrupting substances is cadmium (Cd), a ubiquitous toxic metal shown to act as a thyroid disruptor and carcinogen in both animals and humans. Multiple PubMed searches with core keywords were performed to identify and evaluate appropriate studies which revealed literature suggesting evidence for the link between exposure to Cd and histological and metabolic changes in the thyroid gland. Furthermore, Cd influence on thyroid homeostasis at the peripheral level has also been hypothesized. Both in vivo and in vitro studies revealed that a Cd exposure at environmentally relevant concentrations results in biphasic Cd dose-thyroid response relationships. Development of thyroid tumors following exposure to Cd has been studied mainly using in vitro methodologies. In the thyroid, Cd has been shown to activate or stimulate the activity of various factors, leading to increased cell proliferation and a reduction in normal apoptotic activity. Evidence establishing the association between Cd and thyroid disruption remains ambiguous, with further studies needed to elucidate the issue and improve our understanding of Cd-mediated effects on the thyroid gland.


Assuntos
Cádmio/farmacologia , Disruptores Endócrinos/farmacologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Animais , Cádmio/toxicidade , Intoxicação por Cádmio , Disruptores Endócrinos/toxicidade , Exposição Ambiental/efeitos adversos , Humanos , Doenças da Glândula Tireoide/etiologia , Doenças da Glândula Tireoide/metabolismo , Testes de Função Tireóidea , Neoplasias da Glândula Tireoide/etiologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
16.
Environ Sci Pollut Res Int ; 25(8): 7223-7230, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26676538

RESUMO

Fully brominated diphenyl ether (BDE-209) is a flame retardant widely used in plastics and textiles. Because of its high persistence, humans are exposed to it continuously, mainly via dust ingestion. We investigated effects of BDE-209 on renal function and oxidative stress development in the kidney after subacute exposure in rats. Five groups of animals were given by oral gavage 31.25-500 mg BDE-209/kg b.w./day for 28 days, and relative kidney weight, serum urea and creatinine, and oxidative stress parameters in the kidney were determined. Benchmark-dose approach was used for dose response modeling. Serum creatinine was increased, while results obtained for serum urea were inconclusive. Relative kidney weight was not affected by BDE-209. Kidney reduced glutathione was elevated, while superoxide dismutase activity was not changed after BDE-209 treatment. Also, levels of thiobarbituric acid reactive substances (TBARS) were increased and total -SH groups were decreased, which indicated oxidative imbalance. The critical effect dose (CED)/CEDL ratios for the effects on TBARS and total -SH groups indicated estimated CEDs for these markers can be used in risk assessment of BDE-209. Our study results have shown that a relatively low dose of BDE-209 affects kidney function and that oxidative stress is one of the mechanisms of its nephrotoxicity.


Assuntos
Retardadores de Chama/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Éteres Difenil Halogenados/química , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Éteres Fenílicos/química , Bifenil Polibromatos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Animais , Biomarcadores , Glutationa Peroxidase/química , Humanos , Bifenil Polibromatos/química , Ratos , Ratos Wistar
17.
Environ Res ; 157: 173-181, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28570961

RESUMO

Cadmium (Cd) has proved to be associated with numerous toxic effects in aquatic organisms via waterborne exposure. With a view to investigate Cd toxicity along a broad spectrum of exposures reaching from environmental to toxic, we employed adult zebrafish (Danio rerio) for an in vivo study. A number of 10 fish per tank were placed in 40L tanks and were exposed for 30 days to 0.0, 5.0, 25, 50, 75, 100 and 1000µgCd per liter. There were 2 tanks for each Cd exposure (duplicate experiment). Mortality was recorded daily, dead fish were collected and tissue samples were obtained for histologic observation, whereas remaining tissues were stored for Cd burden determination. Surviving fish were collected at the end of the experiment. Median overall survival (OS) in days was found to be 9.0, 11.0, 8.0 and 7.0 for 25µg/L, 50µg/L, 75µg/L and 100µg/L respectively, with all of them showing mortality greater than 50%. Remarkably, fish exposed to the highest Cd concentration (1000µg/L) survived the longest exhibiting a mean OS of 29.2 days. Cd determination in fish tissue was conducted with an in house ICP-MS method and levels ranged from 3.1 to 29.1ng/mg. Log Cd tissue levels were significantly correlated with the log Cd exposure levels (r = 0.535, p < 0.001). The highest Cd burden was determined for fish exposed to 1000µgCd /L (mean = 12.2ng/mg). Histopathology supported these results. Our findings disclose a deviation in toxic responses through the range of Cd concentrations, leading to nonlinear responses. These differentiated responses, could be linked to hormesis phenomena.


Assuntos
Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Relação Dose-Resposta a Droga , Dinâmica não Linear , Distribuição Tecidual
18.
Arh Hig Rada Toksikol ; 68(1): 38-45, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365673

RESUMO

The study was designed to investigate the influence of zinc (Zn) supplementation on cadmium-induced alterations in zinc, copper (Cu), and magnesium (Mg) status in rabbits. For this purpose, the concentrations of cadmium (Cd), Zn, Cu, and Mg were estimated in the blood, liver, kidney, and bone. The rabbits were divided in a control group, a Cd group-animals intoxicated orally with Cd (10 mg kg-1 bw, as aqueous solution of Cd-chloride), and a Cd+Zn group-animals intoxicated with the same dose of Cd and co-treated with Zn (20 mg kg-1 bw, as aqueous solution of Zn-sulphate). Solutions were administered orally, every day for 28 days. Sample mineralisation was performed with concentrated nitric acid (HNO3) and perchloric acid (HClO4) (4:1) and metal concentrations were determined by atomic absorption spectrophotometry (AAS). Zinc supplementation improved some of Cd-induced disturbances in bioelement levels in the investigated tissues. Beneficial effects of Zn on Zn and Cu levels were observed in blood, as well as on the Cu kidney level. The calculated values for Cu/Zn, Mg/Zn, and Mg/Cu ratios in blood suggest that Zn co-treatment reduces Cd-induced changes in bioelement ratios in blood.


Assuntos
Cádmio/toxicidade , Cobre/análise , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Magnésio/análise , Zinco/análise , Animais , Masculino , Coelhos
19.
Toxicology ; 376: 120-125, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27181932

RESUMO

The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism for the effects on RBC and WBC while no interactions were proved for the joint effect on PLT count. These results confirm that the assessment of interactions between chemicals in the mixture greatly depends on the concept or method used for this evaluation.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Cádmio/sangue , Cádmio/toxicidade , Éteres Difenil Halogenados/sangue , Éteres Difenil Halogenados/toxicidade , Animais , Contagem de Células Sanguíneas/métodos , Células Sanguíneas/fisiologia , Interações Medicamentosas/fisiologia , Masculino , Ratos , Ratos Wistar , Análise de Regressão
20.
Biomed Res Int ; 2017: 1981837, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29349066

RESUMO

Although profoundly studied, etiology of pancreatic cancer (PC) is still rather scant. Exposure to cadmium (Cd), a ubiquitous metal associated with well-established toxic and carcinogenic properties, has been hypothesized to one putative cause of PC. Hence, we analyzed recently published observational studies, meta-analyses, and experimental animal and in vitro studies with the aim of summarizing the evidence of Cd involvement in PC development and describing the possible mechanisms. Consolidation of epidemiological data on PC and exposure to Cd indicated a significant association with an elevated risk of PC among general population exposed to Cd. Cadmium exposure of laboratory animals was showed to cause PC supporting the findings suggested by human studies. The concordance with human and animal studies is buttressed by in vitro studies, although in vitro data interpretation is problematic. In most instances, only significant effects are reported, and the concentrations of Cd are excessive, which would skew interpretation. Previous reports suggest that oxidative stress, apoptotic changes, and DNA cross-linking and hypermethylation are involved in Cd-mediated carcinogenesis. Undoubtedly, a significant amount of work is still needed to achieve a better understanding of the Cd involvement in pancreatic cancer which could facilitate prevention, diagnosis, and therapy of this fatal disease.


Assuntos
Cádmio/toxicidade , Neoplasias Pancreáticas/epidemiologia , Animais , Metilação de DNA , Modelos Animais de Doenças , Humanos , Camundongos , Estresse Oxidativo , Ratos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...