Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 13(6): 1468-1486, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32684970

RESUMO

Striped Bass, Morone saxatilis (Walbaum, 1792), is an anadromous fish species that supports fisheries throughout North America and is native to the North American Atlantic Coast. Due to long coastal migrations that span multiple jurisdictions, a detailed understanding of population genomics is required to untangle demographic patterns, understand local adaptation, and characterize population movements. This study used 1,256 single nucleotide polymorphism (SNP) loci to investigate genetic structure of 477 Striped Bass sampled from 15 locations spanning the North American Atlantic coast from the Gulf of St. Lawrence, Canada, to the Cape Fear River, United States. We found striking differences in neutral divergence among Canadian sites, which were isolated from each other and US populations, compared with US populations that were much less isolated. Our SNP dataset was able to assign 99% of Striped Bass back to six reporting groups, a 39% improvement over previous genetic markers. Using this method, we found (a) evidence of admixture within Saint John River, indicating that migrants from the United States and from Shubenacadie River occasionally spawn in the Saint John River; (b) Striped Bass collected in the Mira River, Cape Breton, Canada, were found to be of both Miramichi River and US origin; (c) juveniles in the newly restored Kennebec River population had small and nonsignificant differences from the Hudson River; and (d) tributaries within the Chesapeake Bay showed a mixture of homogeny and small differences among each other. This study introduces new hypotheses about the dynamic zoogeography of Striped Bass at its northern range and has important implications for the local and international management of this species.

2.
Evol Appl ; 13(5): 1069-1089, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431753

RESUMO

Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this study, the genetic structure of brook trout populations in the province was unknown; however, given the potential negative consequences associated with hatchery stocking, it is possible that hatchery programs have adversely affected the genetic integrity of wild populations. To assess the influence of hatchery supplementation on wild populations, we genotyped wild brook trout from 12 river systems and hatchery brook trout from two major hatcheries using 100 microsatellite loci. Genetic analyses of wild trout revealed extensive population genetic structure among and within river systems and significant isolation-by-distance. Hatchery stocks were genetically distinct from wild populations, and most populations showed limited to no evidence of hatchery introgression (<5% hatchery ancestry). Only a single location had a substantial number of hatchery-derived trout and was located in the only river where a local strain is used for supplementation. The amount of hatchery stocking within a watershed did not influence the level of hatchery introgression. Neutral genetic structure of wild populations was influenced by geography with some influence of climate and stocking indices. Overall, our study suggests that long-term stocking has not significantly affected the genetic integrity of wild trout populations, highlighting the variable outcomes of stocking and the need to evaluate the consequences on a case-by-case basis.

3.
PLoS One ; 11(7): e0158387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27383274

RESUMO

In the Bay of Fundy, Atlantic sturgeon from endangered and threatened populations in the USA and Canada migrate through Minas Passage to enter and leave Minas Basin. A total of 132 sub-adult and adult Atlantic sturgeon were tagged in Minas Basin during the summers of 2010-2014 using pressure measuring, uniquely coded, acoustic transmitters with a four or eight year life span. The aim of this study was to examine spatial and seasonal distribution of sturgeon in Minas Passage during 2010-2014 and test the hypothesis that, when present, Atlantic sturgeon were evenly distributed from north to south across Minas Passage. This information is important as tidal energy extraction using in-stream, hydrokinetic turbines is planned for only the northern portion of Minas Passage. Electronic tracking data from a total of 740 sturgeon days over four years demonstrated that Atlantic sturgeon used the southern portion of Minas Passage significantly more than the northern portion. Sturgeon moved through Minas Passage at depths mostly between 15 and 45 m (n = 10,116; mean = 31.47 m; SD = 14.88). Sturgeon mean swimming depth was not significantly related to bottom depth and in deeper regions they swam pelagically. Sturgeon predominately migrated inward through Minas Passage during spring, and outward during late summer-autumn. Sturgeon were not observed in Minas Passage during winter 2012-2013 when monitoring receivers were present. This information will enable the estimation of encounters of Atlantic sturgeon with in-stream hydrokinetic turbines.


Assuntos
Distribuição Animal , Peixes/fisiologia , Acústica , Migração Animal , Animais , Feminino , Geografia , Masculino , Nova Escócia , Probabilidade , Estações do Ano , Análise Espaço-Temporal , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...