Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(639): eaaz8454, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385341

RESUMO

Postnatal maturation of the immune system is poorly understood, as is its impact on illnesses afflicting term or preterm infants, such as bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension. These are both cardiopulmonary inflammatory diseases that cause substantial mortality and morbidity with high treatment costs. Here, we characterized blood samples collected from 51 preterm infants longitudinally at five time points, 20 healthy term infants at birth and age 3 to 16 weeks, and 5 healthy adults. We observed strong associations between type 2 immune polarization in circulating CD3+CD4+ T cells and cardiopulmonary illness, with odds ratios up to 24. Maternal magnesium sulfate therapy, delayed hepatitis B vaccination, and increasing fetal, but not maternal, chorioamnionitis severity were associated with attenuated type 2 polarization. Blocking type 2 mediators such as interleukin-4 (IL-4), IL-5, IL-13, or signal transducer and activator of transcription 6 (STAT6) in murine neonatal cardiopulmonary disease in vivo prevented changes in cell type composition, increases in IL-1ß and IL-13, and losses of pulmonary capillaries, but not gains in larger vessels. Thereby, type 2 blockade ameliorated lung inflammation, protected alveolar and vascular integrity, and confirmed the pathological impact of type 2 cytokines and STAT6. In-depth flow cytometry and single-cell transcriptomics of mouse lungs further revealed complex associations between immune polarization and cardiopulmonary disease. Thus, this work advances knowledge on developmental immunology and its impact on early life disease and identifies multiple therapeutic approaches that may relieve inflammation-driven suffering in the youngest patients.


Assuntos
Displasia Broncopulmonar , Interleucina-13 , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/prevenção & controle , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/complicações , Pulmão/patologia , Camundongos , Gravidez
2.
Nat Commun ; 11(1): 5794, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188181

RESUMO

Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46-RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.


Assuntos
Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/imunologia , Imunidade Adaptativa , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Enterocolite Necrosante/sangue , Enterocolite Necrosante/patologia , Homeostase , Humanos , Imunidade Inata , Recém-Nascido , Mediadores da Inflamação/metabolismo , Interleucina-1 , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Toll-Like/metabolismo
3.
Front Immunol ; 10: 1480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354700

RESUMO

Pulmonary hypertension secondary to bronchopulmonary dysplasia (BPD-PH) represents a major complication of BPD in extremely preterm infants for which there are currently no safe and effective interventions. The abundance of interleukin-1 (IL-1) is strongly correlated with the severity and long-term outcome of BPD infants and we have previously shown that IL-1 receptor antagonist (IL-1Ra) protects against murine BPD; therefore, we hypothesized that IL-1Ra may also be effective against BPD-PH. We employed daily injections of IL-1Ra in a murine model in which BPD/BPD-PH was induced by antenatal LPS and postnatal hyperoxia of 65% O2. Pups reared in hyperoxia for 28 days exhibited a BPD-PH-like disease accompanied by significant changes in pulmonary vascular morphology: micro-CT revealed an 84% reduction in small vessels (4-5 µm diameter) compared to room air controls; this change was prevented by IL-1Ra. Pulmonary vascular resistance, assessed at day 28 of life by echocardiography using the inversely-related surrogate marker time-to-peak-velocity/right ventricular ejection time (TPV/RVET), increased in hyperoxic mice (0.27 compared to 0.32 in air controls), and fell significantly with daily IL-1Ra treatment (0.31). Importantly, in vivo cine-angiography revealed that this protection afforded by IL-1Ra treatment for 28 days is maintained at day 60 of life. Despite an increased abundance of mediators of pulmonary angiogenesis in day 5 lung lysates, namely vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1), no difference was detected in ex vivo pulmonary vascular reactivity between air and hyperoxia mice as measured in precision cut lung slices, or by immunohistochemistry in alpha-smooth muscle actin (α-SMA) and endothelin receptor type-A (ETA) at day 28. Further, on day 28 of life we observed cardiac fibrosis by Sirius Red staining, which was accompanied by an increase in mRNA expression of galectin-3 and CCL2 (chemokine (C-C motif) ligand 2) in whole hearts of hyperoxic pups, which improved with IL-1Ra. In summary, our findings suggest that daily administration of the anti-inflammatory IL-1Ra prevents the increase in pulmonary vascular resistance and the pulmonary dysangiogenesis of murine BPD-PH, thus pointing to IL-1Ra as a promising candidate for the treatment of both BPD and BPD-PH.


Assuntos
Anti-Inflamatórios/farmacologia , Displasia Broncopulmonar/prevenção & controle , Hipertensão Pulmonar/prevenção & controle , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Resistência Vascular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Endotelina-1/metabolismo , Hiperóxia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Sci Rep ; 9(1): 6922, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061403

RESUMO

Post-stroke inflammation may contribute to secondary brain injury and systemic immunosuppression. Interleukin(IL)-37 is an immunosuppressive cytokine belonging to the IL-1 superfamily with no mouse homologue yet identified, the effects of which have not been studied in stroke. Here we report: (1) the effect of ischemic stroke on circulating IL-37 in humans; and (2) the effect of IL-37 on stroke outcome measures in mice transgenic for human IL-37 (IL-37tg). We found that in the first 3 days after ischemic stroke in 55 patients, the plasma abundance of IL-37 was ~2-fold higher than in 24 controls. In IL-37tg mice, cerebral ischemia-reperfusion resulted in marked increases in plasma IL-37 (~9-fold) and brain IL-37 mRNA (~7,000-fold) at 24 h compared with sham-operated IL-37tg mice. Further, compared with wild-type (WT) mice subjected to cerebral ischemia-reperfusion, IL-37tg mice exhibited less severe locomotor deficit, smaller cerebral infarcts and reduced bacterial lung infection. In the ischemic hemisphere, there were 60% fewer pro-inflammatory microglia-macrophages and up to 4-fold higher expression of anti-inflammatory markers in IL-37tg compared to WT mice. Our data show that IL-37 expression is increased following ischemic stroke in humans and IL-37tg mice, and may exert protective effects by modulating post-stroke inflammation in the brain and periphery.


Assuntos
Lesões Encefálicas/complicações , Interleucina-1/genética , Isquemia/complicações , Pulmão/microbiologia , Atividade Motora , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Animais , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Prognóstico , Transporte Proteico , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia , Regulação para Cima
5.
J Reprod Immunol ; 124: 21-29, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29035757

RESUMO

Bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension (BPD-PH) are chronic inflammatory cardiopulmonary diseases with devastating short- and long-term consequences for infants born prematurely. The immature lungs of preterm infants are ill-prepared to achieve sufficient gas exchange, thus usually necessitating immediate commencement of respiratory support and oxygen supplementation. These therapies are life-saving, but they exacerbate the tissue damage that is inevitably inflicted on a preterm lung forced to perform gas exchange. Together, air-breathing and necessary therapeutic interventions disrupt normal lung development by aggravating pulmonary inflammation and vascular remodelling, thus frequently precipitating BPD and PH via an incompletely understood pathogenic cascade. BPD and BPD-PH share common risk factors, such as low gestational age at birth, fetal growth restriction and perinatal maternal inflammation; however, these risk factors are not unique to BPD or BPD-PH. Occurring in 17-24% of BPD patients, BPD-PH substantially worsens the morbidity and mortality attributable to BPD alone, thus darkening their outlook; for example, BPD-PH entails a mortality of up to 50%. The absence of a safe and effective therapy for BPD and BPD-PH renders neonatal cardiopulmonary disease an area of urgent unmet medical need. Besides the need to develop new therapeutic strategies, a major challenge for clinicians is the lack of a reliable method for identifying babies at risk of developing BPD and BPD-PH. In addition to discussing current knowledge on pathophysiology, diagnosis and treatment of BPD-PH, we highlight emerging biomarkers that could enable clinicians to predict disease-risk and also optimise treatment of BPD-PH in our tiniest patients.


Assuntos
Displasia Broncopulmonar/epidemiologia , Displasia Broncopulmonar/patologia , Hipertensão Pulmonar/epidemiologia , Doenças do Recém-Nascido/epidemiologia , Recém-Nascido Prematuro/fisiologia , Nascimento Prematuro/epidemiologia , Animais , Desenvolvimento Fetal , Humanos , Oxigenoterapia Hiperbárica , Hipertensão Pulmonar/patologia , Lactente , Recém-Nascido , Doenças do Recém-Nascido/patologia , Inflamação , Nascimento Prematuro/patologia , Respiração , Remodelação Vascular
6.
J Cell Mol Med ; 21(6): 1128-1138, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27957795

RESUMO

Bronchopulmonary dysplasia (BPD) is a severe lung disease of preterm infants, which is characterized by fewer, enlarged alveoli and increased inflammation. BPD has grave consequences for affected infants, but no effective and safe therapy exists. We previously showed that prophylactic treatment with interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD induced by perinatal inflammation and hyperoxia. Here, we used the same BPD model to assess whether an alternative anti-inflammatory agent, protein C (PC), is as effective as IL-1Ra against BPD. We also tested whether delayed administration or a higher dose of IL-1Ra affects its ability to ameliorate BPD and investigated aspects of drug safety. Pups were reared in room air (21% O2 ) or hyperoxia (65% or 85% O2 ) and received daily injections with vehicle, 1200 IU/kg PC, 10 mg/kg IL-1Ra (early or late onset) or 100 mg/kg IL-1Ra. After 3 or 28 days, lung and brain histology were assessed and pulmonary cytokines were analysed using ELISA and cytokine arrays. We found that PC only moderately reduced the severe impact of BPD on lung structure (e.g. 18% increased alveolar number by PC versus 34% by IL-1Ra); however, PC significantly reduced IL-1ß, IL-1Ra, IL-6 and macrophage inflammatory protein (MIP)-2 by up to 89%. IL-1Ra at 10 mg/kg prevented BPD more effectively than 100 mg/kg IL-1Ra, but only if treatment commenced at day 1 of life. We conclude that prophylactic low-dose IL-1Ra and PC ameliorate BPD and have potential as the first remedy for one of the most devastating diseases preterm babies face.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Proteína C/administração & dosagem , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/complicações , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Gravidez , Proteína C/efeitos adversos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...