Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109569, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623329

RESUMO

Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.

3.
Placenta ; 144: 13-22, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949031

RESUMO

INTRODUCTION: Mortality from preeclampsia (PE) and PE-associated morbidities are 3-to 5-fold higher in persons of African ancestry than in those of Asian and European ancestries. METHODS: To elucidate placental contribution to worse PE outcomes in African ancestry pregnancies, we performed bulk RNA sequencing on 50 placentas from persons with severe PE (sPE) of African (n = 9), Asian (n = 18) and European (n = 23) ancestries and 73 normotensive controls of African (n = 10), Asian (n = 15) and European (n = 48) ancestries. RESULTS: Previously described canonical preeclampsia genes, involved in metabolism and hypoxia/angiogenesis including: LEP, HK2, FSTL3, FLT1, ENG, TMEM45A, ARHGEF4 and HTRA1 were upregulated sPE versus normotensive placentas across ancestries. LTF, NPR3 and PHYHIP were higher in African vs. Asian ancestry sPE placentas. Allograft rejection/adaptive immune response genes were upregulated in placentas from African but not in Asian or European ancestry sPE patients; IL3RA was of particular interest because the patient with the highest placental IL3RA expression, a person of African ancestry with sPE, developed postpartum cardiomyopathy, and was the only patient out of 123, that developed this condition. Interestingly, the sPE patients with the highest IL3RA expression among persons of Asian and European ancestries developed unexplained tachycardia peripartum, necessitating echocardiography in the European ancestry patient. The association between elevated placental IL3RA levels and unexplained tachycardia or peripartum cardiomyopathy was found to be significant in the 50 sPE patients (p = .0005). DISCUSSION: High placental upregulation of both canonical preeclampsia and allograft rejection/adaptive immune response genes may contribute to worse PE outcomes in African ancestry sPE patients.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Pressão Sanguínea , Cardiomiopatias/complicações , Cardiomiopatias/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Taquicardia/complicações , Taquicardia/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica
4.
Curr Protoc ; 3(10): e875, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787612

RESUMO

We previously established a trophoblast differentiation protocol from primed human pluripotent stem cells (PSC). To induce this lineage, we use a combination of Bone Morphogenetic Protein-4 (BMP4) and the WNT inhibitor IWP2. This protocol has enabled us to obtain a pure population of trophectoderm (TE)-like cells that could subsequently be terminally differentiated into syncytiotrophoblasts (STB) and extravillous trophoblasts (EVT). However, the resulting TE-like cells could only be terminally differentiated to a variable mixture of STB and EVT, with a bias toward the STB lineage. Recently, methods have been developed for derivation and culture of self-renewing human trophoblast stem cells (TSC) from human embryos and early gestation placental tissues. These primary TSCs were further able to differentiate into either STB or EVT with high efficiency using the lineage specific differentiation protocols. Based partly on these protocols, we have developed methods for establishing self-renewing TSC-like cells from PSC, and for efficient lineage-specific terminal differentiation. Here, we describe in detail the protocols to derive and maintain PSC-TSC, from both embryonic stem cells (ESC) and patient-derived induced pluripotent stem cells (iPSC), and their subsequent terminal differentiation to STB and EVT. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Trophoblast Differentiation into TE-like Cells Basic Protocol 2: Conversion of PSC-Derived TE-like Cells to TSC Basic Protocol 3: Passaging PSC-Derived TSC in iCTB Complete Medium Basic Protocol 4: STB Differentiation from PSC-derived TSC Basic Protocol 5: EVT Differentiation from PSC-derived TSC Support Protocol 1: Geltrex-coated tissue culture plate preparation Support Protocol 2: Collagen IV-coated tissue culture plate preparation Support Protocol 3: Fibronectin-coated tissue culture plate preparation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Feminino , Gravidez , Trofoblastos , Placenta , Diferenciação Celular
5.
Placenta ; 141: 18-25, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36333266

RESUMO

Our current knowledge of the cellular and molecular mechanisms of placental epithelial cells, trophoblast, primarily came from the use of mouse trophoblast stem cells and tumor-derived or immortalized human trophoblast cell lines. This was mainly due to the difficulties in maintaining primary trophoblast in culture and establishing human trophoblast stem cell (hTSC) lines. However, in-depth characterization of these cellular models and in vivo human trophoblast have revealed significant discrepancies. For the past two decades, multiple groups have shown that human pluripotent stem cells (hPSCs) can be differentiated into trophoblast, and thus could be used as a model for normal and disease trophoblast differentiation. During this time, trophoblast differentiation protocols have evolved, enabling researchers to study cellular characteristics at trophectoderm (TE), trophoblast stem cells (TSC), syncytiotrophoblast (STB), and extravillous trophoblast (EVT) stages. Recently, several groups reported methods to derive hTSC from pre-implantation blastocyst or early gestation placenta, and trophoblast organoids from early gestation placenta, drastically changing the landscape of trophoblast research. These culture conditions have been rapidly applied to generate hPSC-derived TSC and trophoblast organoids. As a result of these technological advancements, the field's capacity to better understand trophoblast differentiation and their involvement in pregnancy related disease has greatly expanded. Here, we present in vitro models of human trophoblast differentiation, describing both primary and hPSC-derived TSC, maintained as monolayers and 3-dimensional trophoblast organoids, as a tool to study early placental development and disease in multiple settings.


Assuntos
Placentação , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Gravidez , Feminino , Placenta/metabolismo , Trofoblastos/metabolismo , Diferenciação Celular
6.
Toxins (Basel) ; 14(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35622588

RESUMO

Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world's protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Animais , Peixes , Nova Zelândia , Frutos do Mar
7.
Stem Cell Reports ; 17(6): 1303-1317, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35594858

RESUMO

Trophoblast stem cells (TSCs) have recently been derived from human embryos and early-first-trimester placenta; however, aside from ethical challenges, the unknown disease potential of these cells limits their scientific utility. We have previously established a bone morphogetic protein 4 (BMP4)-based two-step protocol for differentiation of primed human pluripotent stem cells (hPSCs) into functional trophoblasts; however, those trophoblasts could not be maintained in a self-renewing TSC-like state. Here, we use the first step from this protocol, followed by a switch to newly developed TSC medium, to derive bona fide TSCs. We show that these cells resemble placenta- and naive hPSC-derived TSCs, based on their transcriptome as well as their in vitro and in vivo differentiation potential. We conclude that primed hPSCs can be used to generate functional TSCs through a simple protocol, which can be applied to a widely available set of existing hPSCs, including induced pluripotent stem cells, derived from patients with known birth outcomes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Feminino , Humanos , Placenta , Gravidez , Trofoblastos
8.
J Neurosci ; 41(24): 5173-5189, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33931552

RESUMO

We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.


Assuntos
Encéfalo/fisiopatologia , Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Rede Nervosa/fisiopatologia , Proteínas Circadianas Period/metabolismo , Animais , Encéfalo/metabolismo , Drosophila , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Rede Nervosa/metabolismo , Sono/fisiologia
9.
Sci Rep ; 11(1): 5877, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723311

RESUMO

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder, affecting up to 10% of pregnancies worldwide. The primary etiology is considered to be abnormal development and function of placental cells called trophoblasts. We previously developed a two-step protocol for differentiation of human pluripotent stem cells, first into cytotrophoblast (CTB) progenitor-like cells, and then into both syncytiotrophoblast (STB)- and extravillous trophoblast (EVT)-like cells, and showed that it can model both normal and abnormal trophoblast differentiation. We have now applied this protocol to induced pluripotent stem cells (iPSC) derived from placentas of pregnancies with or without PE. While there were no differences in CTB induction or EVT formation, PE-iPSC-derived trophoblast showed a defect in syncytialization, as well as a blunted response to hypoxia. RNAseq analysis showed defects in STB formation and response to hypoxia; however, DNA methylation changes were minimal, corresponding only to changes in response to hypoxia. Overall, PE-iPSC recapitulated multiple defects associated with placental dysfunction, including a lack of response to decreased oxygen tension. This emphasizes the importance of the maternal microenvironment in normal placentation, and highlights potential pathways that can be targeted for diagnosis or therapy, while absence of marked DNA methylation changes suggests that other regulatory mechanisms mediate these alterations.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Pré-Eclâmpsia/patologia , Adulto , Estudos de Casos e Controles , Diferenciação Celular , Metilação de DNA/genética , Epigenoma , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Oxigênio , Fenótipo , Placenta/patologia , Gravidez , Análise de Componente Principal , RNA-Seq , Trofoblastos/patologia , Cordão Umbilical/patologia , Adulto Jovem
10.
Cell Rep Med ; 1(2)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32864636

RESUMO

Development of effective prevention and treatment strategies for pre-eclampsia is limited by the lack of accurate methods for identification of at-risk pregnancies. We performed small RNA sequencing (RNA-seq) of maternal serum extracellular RNAs (exRNAs) to discover and verify microRNAs (miRNAs) differentially expressed in patients who later developed pre-eclampsia. Sera collected from 73 pre-eclampsia cases and 139 controls between 17 and 28 weeks gestational age (GA), divided into separate discovery and verification cohorts, are analyzed by small RNA-seq. Discovery and verification of univariate and bivariate miRNA biomarkers reveal that bivariate biomarkers verify at a markedly higher rate than univariate biomarkers. The majority of verified biomarkers contain miR-155-5p, which has been reported to mediate the pre-eclampsia-associated repression of endothelial nitric oxide synthase (eNOS) by tumor necrosis factor alpha (TNF-α). Deconvolution analysis reveals that several verified miRNA biomarkers come from the placenta and are likely carried by placenta-specific extracellular vesicles.


Assuntos
Vesículas Extracelulares/metabolismo , MicroRNAs/sangue , Pré-Eclâmpsia/diagnóstico , Adulto , Doenças Assintomáticas , Biomarcadores/sangue , Estudos de Casos e Controles , Vesículas Extracelulares/genética , Feminino , Idade Gestacional , Humanos , Testes para Triagem do Soro Materno/métodos , Testes para Triagem do Soro Materno/tendências , MicroRNAs/metabolismo , Pré-Eclâmpsia/sangue , Gravidez , Prognóstico , Adulto Jovem
11.
Reproduction ; 160(1): R1-R11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485667

RESUMO

Appropriate human trophoblast lineage specification and differentiation is crucial for the establishment of normal placentation and maintenance of pregnancy. However, due to the lack of proper modeling systems, the molecular mechanisms of these processes are still largely unknown. Much of the early studies in this area have been based on animal models and tumor-derived trophoblast cell lines, both of which are suboptimal for modeling this unique human organ. Recent advances in regenerative and stem cell biology methods have led to development of novel in vitro model systems for studying human trophoblast. These include derivation of human embryonic and induced pluripotent stem cells and establishment of methods for the differentiation of these cells into trophoblast, as well as the more recent derivation of human trophoblast stem cells. In addition, advances in culture conditions, from traditional two-dimensional monolayer culture to 3D culturing systems, have led to development of trophoblast organoid and placenta-on-a-chip model, enabling us to study human trophoblast function in context of more physiologically accurate environment. In this review, we will discuss these various model systems, with a focus on human trophoblast, and their ability to help elucidate the key mechanisms underlying placental development and function. This review focuses on model systems of human trophoblast differentiation, including advantages and limitations of stem cell-based culture, trophoblast organoid, and organ-on-a-chip methods and their applications in understanding placental development and disease.


Assuntos
Diferenciação Celular , Epitélio/fisiopatologia , Troca Materno-Fetal , Modelos Biológicos , Placenta/citologia , Placentação , Trofoblastos/citologia , Feminino , Humanos , Placenta/fisiologia , Gravidez , Trofoblastos/fisiologia
12.
Curr Protoc Stem Cell Biol ; 50(1): e96, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479595

RESUMO

We previously established a two-step protocol for differentiation of human pluripotent stem cells (hPSCs) into trophoblasts, using a StemPro-based minimal medium (EMIM) with bone morphogenetic protein-4 (BMP4). This protocol was suboptimal, resulting in induction of mixed mesoderm and trophoblast markers. Furthermore, adapting hPSCs to StemPro has proven difficult, and prolonged culture in this medium has been shown to promote genomic instability. Therefore, we moved on to the use of new media, including E8, and most recently, StemFlex, for rapid adaptation from feeder to non-feeder conditions. In the new protocol, we have incorporated the WNT inhibitor IWP2 into the first step, resulting in uniform differentiation of hPSCs into cytotrophoblast (CTB)-like cells, without induction of the mesoderm lineage. We also show that, at the end of the second step, there are distinct populations of terminally differentiated multinucleated human chorionic gonadotropin (hCG)-producing syncytiotrophoblast (STB) and HLAG+ extravillous trophoblast (EVT)-like cells. © 2019 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Células-Tronco Pluripotentes/citologia , Trofoblastos/citologia , Benzotiazóis/química , Linhagem Celular , Humanos
13.
PLoS One ; 8(11): e78668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244336

RESUMO

The maintenance of traditional microalgae collections based on liquid and solid media is labour intensive, costly and subject to contamination and genetic drift. Cryopreservation is therefore the method of choice for the maintenance of microalgae culture collections, but success is limited for many species. Although the mechanisms underlying cryopreservation are understood in general, many technical variations are present in the literature and the impact of these are not always elaborated. This study describes two-step cryopreservation processes in which 3 microalgae strains representing different cell sizes were subjected to various experimental approaches to cryopreservation, the aim being to investigate mechanistic factors affecting cell viability. Sucrose and dimethyl sulfoxide (DMSO) were used as cryoprotectants. They were found to have a synergistic effect in the recovery of cryopreserved samples of many algal strains, with 6.5% being the optimum DMSO concentration. The effect of sucrose was shown to be due to improved cell survival and recovery after thawing by comparing the effect of sucrose on cell viability before or after cryopreservation. Additional factors with a beneficial effect on recovery were the elimination of centrifugation steps (minimizing cell damage), the reduction of cell concentration (which is proposed to reduce the generation of toxic cell wall components) and the use of low light levels during the recovery phase (proposed to reduce photooxidative damage). The use of the best conditions for each of these variables yielded an improved protocol which allowed the recovery and subsequent improved culture viability of a further 16 randomly chosen microalgae strains. These isolates included species from Chlorellaceae, Palmellaceae, Tetrasporaceae, Palmellopsis, Scenedesmaceae and Chlamydomonadaceae that differed greatly in cell diameter (3-50 µm), a variable that can affect cryopreservation success. The collective improvement of each of these parameters yielded a cryopreservation protocol that can be applied to a broad range of microalgae.


Assuntos
Clorófitas , Criopreservação/métodos , Crioprotetores/química , Dimetil Sulfóxido/química , Microalgas
14.
Radiol Case Rep ; 8(1): 779, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27330613

RESUMO

We report a case of a 2-year old boy with cervicothoracic deformity with vertebral rib anomalies, neurenteric cyst, separate thoracoabominal enteric duplication cyst, concurrent intestinal malrotation, and dextroposition of the heart. This combination of abnormalities is very rare. When these lesions are suspected, the patient must be investigated carefully. This case is presented to show the importance of cross-sectional imaging (MR and CT) for surgical planning.

15.
Pediatr Radiol ; 36(11): 1133-40, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16960686

RESUMO

BACKGROUND: Diffusion-weighted MR imaging (DWI) has been shown to be a great tool to assess white matter development in normal infants. Comparison of cerebral diffusion properties between preterm infants and fetuses of corresponding ages should assist in determining the impact of premature ex utero life on brain maturation. OBJECTIVE: To assess in utero maturation-dependent microstructural changes of fetal cerebral white matter using diffusion tensor MR imaging. MATERIALS AND METHODS: An echoplanar sequence with diffusion gradient (b=700 s/mm(2)) applied in six non-colinear directions was performed between 31 and 37(+3) weeks of gestation in 24 fetuses without cerebral abnormality on T1- and T2-weighted images. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in the white matter. RESULTS: Mean ADC values were 1.8 microm(2)/ms in the centrum semiovale, 1.2 microm(2)/ms in the splenium of the corpus callosum and 1.1 microm(2)/ms in the pyramidal tract. The paired Wilcoxon rank test showed significant differences in ADC between these three white matter regions. Mean FA values were 1.1%, 3.8% and 4.7%, respectively, in the centrum semiovale, corpus callosum and pyramidal tract. A significant age-related decrease in ADC and an increase in FA towards term were demonstrated in the pyramidal tract and corpus callosum. CONCLUSION: Diffusion tensor imaging in utero can provide a quantitative assessment of the microstructural development of fetal white matter. Anisotropic parameters of the diffusion tensor should improve with technical advances.


Assuntos
Encéfalo/embriologia , Imagem de Difusão por Ressonância Magnética , Anisotropia , Feto/anatomia & histologia , Idade Gestacional , Humanos , Análise de Regressão , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...