Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770575

RESUMO

We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.

2.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497277

RESUMO

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

3.
Nat Commun ; 10(1): 327, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659185

RESUMO

Octahedral molecular sieves (OMS) are built of transition metal-oxygen octahedra that delimit sub-nanoscale cavities. Compared to other microporous solids, OMS exhibit larger versatility in properties, provided by various redox states and magnetic behaviors of transition metals. Hence, OMS offer opportunities in electrochemical energy harnessing devices, including batteries, electrochemical capacitors and electrochromic systems, provided two conditions are met: fast exchange of ions in the micropores and stability upon exchange. Here we unveil a novel OMS hexagonal polymorph of tungsten oxide called h'-WO3, built of (WO6)6 tunnel cavities. h'-WO3 is prepared by a one-step soft chemistry aqueous route leading to the hydrogen bronze h'-H0.07WO3. Gentle heating results in h'-WO3 with framework retention. The material exhibits an unusual combination of 1-dimensional crystal structure and 2-dimensional nanostructure that enhances and fastens proton (de)insertion for stable electrochromic devices. This discovery paves the way to a new family of mixed valence functional materials with tunable behaviors.

4.
Inorg Chem ; 55(21): 11502-11512, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27731982

RESUMO

An aqueous synthetic route at 95 °C is developed to reach selectively three scarcely reported vanadium oxyhydroxides. Häggite V2O3(OH)2, Duttonite VO(OH)2, and Gain's hydrate V2O4(H2O)2 are obtained as nanowires, nanorods, and nanoribbons, with sizes 1 order of magnitude smaller than previously reported. X-ray absorption spectroscopy provides evidence that vanadium in these phases is V+IV. Combined with FTIR, XRD, and electron microscopy, it yields the first insights into formation mechanisms, especially for Häggite and Gain's hydrate. This study opens the way for further investigations of the properties of novel V+IV (oxyhydr)oxides nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...