Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(5): 2601-2615, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38279929

RESUMO

Optical metasurfaces are two-dimensional assemblies of nanoscale optical resonators and could constitute the next generation of ultrathin optical components. The development of methods to manufacture these nanostructures on a large scale is still a challenge, while most performance demonstrations were obtained with lithographically fabricated metasurfaces that are restricted to small scales. Self-assembly fabrication routes are promising alternatives and have been used to produce original nanoresonators. Reports of self-assembled metasurface fabrication, however, are still scarce. Here, we show that an emulsion-based formulation approach can be used both for the fabrication of complex colloidal resonators, presenting a strong interaction with light, in particular due to simultaneous magnetic and electric modes of resonance, and for their deposition in homogeneous films. This fabrication technique involves emulsification of an aqueous suspension of silver nanoparticles in an oil phase, followed by controlled drying of the emulsion, and produces silver colloidal clusters. We show that the drying process can be controlled in a liquid emulsion, producing a metafluid, as well as in a sedimented emulsion, producing a metasurface. The structural control of the synthesized colloidal clusters is demonstrated with electron microscopy and X-ray scattering techniques. Using a polarization-resolved multiangle light scattering setup in the visible wavelength range, we conduct a comprehensive angular and spectroscopic study of the optical resonant scattering of the nanoresonators in a metafluid and show that they present strong optical magnetic resonances and directional forward-scattering patterns, with scattering efficiencies of up to 4. The metasurfaces consist of homogeneous films, of variable surface density, of colloidal clusters that have the same extinction properties on the surface and in the fluid. This experimental approach allows for large-scale production of metasurfaces.

2.
Sci Rep ; 11(1): 18192, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521865

RESUMO

Trypanosome parasites are infecting mammals in Sub-Saharan Africa and are transmitted between hosts through bites of the tsetse fly. The transmission from the insect vector to the mammal host causes a number of metabolic and physiological changes. A fraction of the population continuously adapt to the immune system of the host, indicating heterogeneity at the population level. Yet, the cell to cell variability in populations is mostly unknown. We develop here an analytical method for quantitative measurements at the single cell level based on encapsulation and cultivation of single-cell Trypanosoma brucei in emulsion droplets. We first show that mammalian stage trypanosomes survive for several hours to days in droplets, with an influence of droplet size on both survival and growth. We unravel various growth patterns within a population and find that droplet cultivation of trypanosomes results in 10-fold higher cell densities of the highest dividing cell variants compared to standard cultivation techniques. Some variants reach final cell titers in droplets closer to what is observed in nature than standard culture, of practical interest for cell production. Droplet microfluidics is therefore a promising tool for trypanosome cultivation and analysis with further potential for high-throughput single cell trypanosome analysis.


Assuntos
Divisão Celular , Microfluídica/métodos , Análise de Célula Única/métodos , Trypanosoma brucei brucei/fisiologia , Variação Biológica da População , Emulsões/química , Trypanosoma brucei brucei/genética
3.
ISME J ; 15(7): 2057-2069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33568788

RESUMO

Adaptation of cell populations to environmental changes is mediated by phenotypic variability at the single-cell level. Enzyme activity is a key factor in cell phenotype and the expression of the alkaline phosphatase activity (APA) is a fundamental phytoplankton strategy for maintaining growth under phosphate-limited conditions. Our aim was to compare the APA among cells and species revived from sediments of the Bay of Brest (Brittany, France), corresponding to a pre-eutrophication period (1940's) and a beginning of a post-eutrophication period (1990's) during which phosphate concentrations have undergone substantial variations. Both toxic marine dinoflagellate Alexandrium minutum and the non-toxic dinoflagellate Scrippsiella acuminata were revived from ancient sediments. Using microfluidics, we measured the kinetics of APA at the single-cell level. Our results indicate that all S. acuminata strains had significantly higher APA than A. minutum strains. For both species, the APA in the 1990's decade was significantly lower than in the 1940's. For the first time, our results reveal both inter and intraspecific variabilities of dinoflagellate APA and suggest that, at a half-century timescale, two different species of dinoflagellate may have undergone similar adaptative evolution to face environmental changes and acquire ecological advantages.


Assuntos
Dinoflagellida , Fosfatase Alcalina/genética , Dinoflagellida/genética , Eutrofização , França , Fitoplâncton
4.
Nano Lett ; 19(8): 5790-5795, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31345033

RESUMO

The physics of collective optical response of molecular assemblies, pioneered by Dicke in 1954, has long been at the center of theoretical and experimental scrutiny. The influence of the environment on such phenomena is also of great interest due to various important applications in, e.g., energy conversion devices. In this Letter, we demonstrate both experimentally and theoretically the spatial modulations of the collective decay rates of molecules placed in proximity to a metal interface. We show in a very simple framework how the cooperative optical response can be analyzed in terms of intermolecular correlations causing interference between the response of different molecules and the polarization induced on a nearby metallic boundary and predict similar collective interference phenomena in excitation energy transfer between molecular aggregates.

5.
Anal Chem ; 90(6): 4174-4181, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29464952

RESUMO

One way for phytoplankton to survive orthophosphate depletion is to utilize dissolved organic phosphorus by expressing alkaline phosphatase. The actual methods to assay alkaline phosphate activity-either in bulk or as a presence/absence of enzyme activity-fail to provide information on individual living cells. In this context, we develop a new microfluidic method to compartmentalize cells in 0.5 nL water-in-oil droplets and measure alkaline phosphatase activity at the single-cell level. We use enzyme-labeled fluorescence (ELF), which is based on the hydrolysis of ELF-P substrate, to monitor in real time and at the single-cell level both qualitative and quantitative information on cell physiology (i.e., localization and number of active enzyme sites and alkaline phosphatase kinetics). We assay the alkaline phosphatase activity of Tetraselmis sp. as a function of the dissolved inorganic phosphorus concentration and show that the time scale of the kinetics spans 1 order of magnitude. The advantages of subnanoliter-scale compartmentalization in droplet-based microfluidics provide a precise characterization of a population with single-cell resolution. Our results highlight the key role of cell physiology to efficiently access dissolved organic phosphorus.


Assuntos
Fosfatase Alcalina/metabolismo , Clorófitas/enzimologia , Ensaios Enzimáticos/instrumentação , Dispositivos Lab-On-A-Chip , Fitoplâncton/enzimologia , Clorófitas/metabolismo , Hidrólise , Fósforo/metabolismo , Fitoplâncton/metabolismo , Análise de Célula Única/instrumentação
6.
J Am Chem Soc ; 136(44): 15461-4, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25298164

RESUMO

Co/Fe Prussian Blue analogues are known to display both thermally and light induced electron transfer attributed to the switching between diamagnetic {Fe(II)LS(µ-CN)Co(III)LS} and paramagnetic {Fe(III)LS(µ-CN)Co(II)HS} pairs (LS = low spin; HS = high spin). In this work, a dinuclear cyanido-bridged Co/Fe complex, the smallest {Fe(µ-CN)Co} moiety at the origin of the remarkable physical properties of these systems, has been designed by a rational building-block approach. Combined structural, spectroscopic, magnetic and photomagnetic studies reveal that a metal-to-metal electron transfer that can be triggered in solid state by light, temperature and solvent contents, is observed for the first time in a dinuclear complex.

7.
J Am Chem Soc ; 135(39): 14840-53, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23968396

RESUMO

The spin-crossover complex [Fe(LN5)(CN)2]·H2O (1, LN5 = 2,13-dimethyl-3,6,9-12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), reported previously by Nelson et al. in 1986, was reinvestigated, and its structure determined by single crystal X-ray diffraction for the first time. The reaction between [Mn(III)(saltmen)(H2O)](+) and this photomagnetic linker yielded the trinuclear molecular complex [{Mn(saltmen)}2FeHS(LN5)(CN)2](ClO4)2·0.5CH3OH (2) and the one-dimensional compound [{Mn(saltmen)}2FeLS(LN5)(CN)2](ClO4)2·0.5C4H10O·0.5H2O (3) depending on the addition order of the reagents (HS: High-Spin; LS: Low-Spin). Compound 3 exhibits a wave-shaped chain structure built from the assembly of the trinuclear [Mn(III)-NC-Fe(II)] motif found in 2. Static magnetic measurements revealed the existence of antiferromagnetic Mn(III)···Fe(II) (Fe(II) HS, S = 2) interactions in the trinuclear entity of 2 via the cyanido bridge leading to an ST = 2 ground state. In the case of 3, concomitant ferromagnetic and antiferromagnetic exchange interactions are found along the chain due to the presence of two crystallographically independent {Mn2(saltmen)2} units, which behave differently as shown by the magnetic susceptibility analysis, while the Fe(II) (LS, S = 0) cyanido-bridging moiety is isolating these dinuclear Mn(III) units. ac susceptibility experiments indicated slow relaxation of the magnetization arising from the ferromagnetically coupled [Mn2] units (τ0 = 1.1 × 10(-7) s and Δ(eff)/k(B) = 13.9 K). Optical reflectivity and photomagnetic properties of 1 and 3 have been investigated in detail. These studies reveal that the photomagnetic properties of 1 are kept after its coordination to the acceptor Mn(III)/saltmen complexes, allowing in 3 to switch "on" and "off" the magnetic interaction between the photoinduced Fe(II) HS unit (S = 2) and the Mn(III) ions. To the best of our knowledge, the compound 3 represents the first example of a coordination network of single-molecule magnets linked by spin-crossover units inducing thermally and photoreversible magnetic and optical properties.

8.
Langmuir ; 29(32): 10247-53, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23848357

RESUMO

This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.


Assuntos
Ácido Hialurônico/química , Nanotubos de Carbono/química , Géis/síntese química , Géis/química , Humanos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...