Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167020, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244390

RESUMO

Liver sinusoidal endothelial cells (LSECs) play a crucial role in maintaining liver microcirculation and exchange of nutrients in the liver and are thought to be involved in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). The activation of hepatic stellate cells (HSCs) and Kupffer cells (KCs) has been considered to be responsible for the onset of liver fibrosis and the aggravation of liver injury. However, the paracrine regulatory effects of LSECs in the development of MASLD, in particular the role of LSEC-derived extracellular vesicles (EVs) remains unclear. Therefore, the aim of the present study was to investigate the influence of LSEC-derived EVs on HSCs and KCs. Primary rat LSECs, HSCs and KCs were isolated from male Wistar rats. LSEC-derived EVs were isolated from conditioned medium by ultracentrifugation and analyzed by nanoparticle tracking analysis, and expression of specific markers. LSEC-derived EVs reduced the expression of activation markers in activated HSCs but did not affect quiescent HSCs. Also, LSEC-derived EVs suppressed proliferation of activated HSCs activation, as assessed by Xcelligence and BrdU assay. LSEC-derived EVs also increased the expression of inflammatory genes in HSCs that normally are lowly expression during their activation. In contrast, EVs decreased the expression of inflammatory genes in activated KCs. In summary, our results suggest that LSEC-derived EVs may attenuate the fibrogenic phenotype of activated HSCs and the inflammatory phenotype of KCs. Our results show promise for LSEC-derived EVs as therapeutic moieties to treat MASLD. In addition, these EVs might prove of diagnostic value.


Assuntos
Vesículas Extracelulares , Células de Kupffer , Ratos , Animais , Masculino , Células de Kupffer/metabolismo , Células Estreladas do Fígado/metabolismo , Células Endoteliais/metabolismo , Ratos Wistar , Fígado/metabolismo
2.
Antioxidants (Basel) ; 12(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001774

RESUMO

Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation. Primary cultures of rat hepatocytes were exposed to palmitic acid (PA) and palmitic acid plus oleic acid (OA/PA) as models of lipotoxicity and lipid accumulation, respectively. Esculetin significantly reduced oxidative stress in PA-treated hepatocytes, as shown by decreased total reactive oxygen species (ROS) and mitochondrial superoxide production and elevated expression of antioxidant genes, including Nrf2 and Gpx1. In addition, esculetin protects against PA-induced necrosis. Esculetin also improved lipid metabolism in primary hepatocytes exposed to nonlipotoxic OA/PA by decreasing the expression of the lipogenesis-related gene Srebp1c and increasing the expression of the fatty acid ß-oxidation-related gene Ppar-α. Moreover, esculetin attenuated lipid accumulation in OA/PA-treated hepatocytes. The protective effects of esculetin against lipotoxicity and lipid accumulation were shown to be dependent on the inhibition of JNK and the activation of AMPK, respectively. We conclude that esculetin is a promising compound to target lipotoxicity and lipid accumulation in the treatment of MAFLD.

3.
J Cell Physiol ; 238(10): 2293-2303, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37555553

RESUMO

Liver fibrosis is the response of the liver to chronic liver inflammation. The communication between the resident liver macrophages (Kupffer cells [KCs]) and hepatic stellate cells (HSCs) has been mainly viewed as one-directional: from KCs to HSCs with KCs promoting fibrogenesis. However, recent studies indicated that HSCs may function as a hub of intercellular communications. Therefore, the aim of the present study was to investigate the role of HSCs on the inflammatory phenotype of KCs. Primary rat HSCs and KCs were isolated from male Wistar rats. HSCs-derived conditioned medium (CM) was harvested from different time intervals (Day 0-2: CM-D2 and Day 5-7: CM-D7) during the activation of HSCs. Extracellular vesicles (EVs) were isolated from CM by ultracentrifugation and evaluated by nanoparticle tracking analysis and western blot analysis. M1 and M2 markers of inflammation were measured by quantitative PCR and macrophage function by assessing phagocytic capacity. CM-D2 significantly induced the inflammatory phenotype in KCs, but not CM-D7. Neither CM-D2 nor CM-D7 affected the phagocytosis of KCs. Importantly, the proinflammatory effect of HSCs-derived CM is mediated via EVs released from HSCs since EVs isolated from CM mimicked the effect of CM, whereas EV-depleted CM lost its ability to induce a proinflammatory phenotype in KCs. In addition, when the activation of HSCs was inhibited, HSCs produced less EVs. Furthermore, the proinflammatory effects of CM and EVs are related to activating Toll-like receptor 4 (TLR4) in KCs. In conclusion, HSCs at an early stage of activation induce a proinflammatory phenotype in KCs via the release of EVs. This effect is absent in CM derived from HSCs at a later stage of activation and is dependent on the activation of TLR4 signaling pathway.

4.
FASEB J ; 37(9): e23124, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37552464

RESUMO

Liver fibrosis results from excessive proliferation of, and collagen production by hepatic stellate cells (HSCs) that is caused by chronic liver injury. No drugs are available to cure liver fibrosis. Hydroxyurea is an anti-proliferative drug that is used in benign and malignant disorders. Here, we studied the effect of hydroxyurea on primary HSCs and its anti-fibrotic effect in the CCl4 mouse model of liver fibrosis. Primary rat HSCs were cultured in the absence or presence of hydroxyurea (0.1-1.0 mmol/L). CCl4 or vehicle was administered to C57BL/6/J mice for 4 weeks, with or without hydroxyurea (100 mg/kg/day) co-treatment. We used real-time cell proliferation analysis, Oil Red O (lipid droplet) staining, immunohistochemistry, Acridine Orange staining (apoptosis), Sytox green staining (necrosis), RT-qPCR, ELISA, and Western Blotting for analysis. Hydroxyurea dose-dependently suppressed lipid droplet-loss and mRNA levels of Col1α1 and Acta2 in transdifferentiating HSCs. In fully-activated HSCs, hydroxyurea dose-dependently attenuated PCNA protein levels and BrdU incorporation, but did not reverse Col1α1 and Acta2 mRNA expression. Hydroxyurea did not induce apoptosis or necrosis in HSCs or hepatocytes. Hydroxyurea suppressed accumulation of desmin-positive HSCs and hepatic collagen deposition after CCl4 treatment. CCl4 -induced regenerative hepatocyte proliferation, Col1α1 and Acta2 mRNA expression and α-SMA protein levels were not affected. This study demonstrates that hydroxyurea inhibits HSC proliferation in vitro and attenuates early development of liver fibrosis in vivo, while preserving hepatocyte regeneration after toxic insults by CCl4. Thus, hydroxyurea may have therapeutic value against liver fibrosis.


Assuntos
Células Estreladas do Fígado , Hidroxiureia , Camundongos , Ratos , Animais , Hidroxiureia/efeitos adversos , Células Estreladas do Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Necrose/patologia , Colágeno/metabolismo , Proliferação de Células , RNA Mensageiro/genética , Tetracloreto de Carbono/toxicidade
5.
Biomed Pharmacother ; 165: 114884, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423170

RESUMO

BACKGROUND: Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. METHODS: Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. RESULTS: Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. CONCLUSIONS: The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD.


Assuntos
Cafeína , Café , Ratos , Masculino , Animais , Cafeína/farmacologia , Palmitatos/farmacologia , Hepatócitos , Receptor A1 de Adenosina/metabolismo
6.
J Cell Biochem ; 124(6): 808-817, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042199

RESUMO

Activation of hepatic stellate cells (HSC) is a key event in the initiation of liver fibrosis. Activated HSCs proliferate and secrete excessive amounts of extracellular matrix (ECM), disturbing liver architecture and function, leading to fibrosis and eventually cirrhosis. Collagen is the most abundant constituent of ECM and proline is the most abundant amino acid of collagen. Arginine is the precursor in the biosynthetic pathway of proline. Arginine is the exclusive substrate of both nitric oxide synthase (NOS) and arginase. NOS is an M1 (proinflammatory) marker of macrophage polarization whereas arginase-1 (Arg1) is an M2 (profibrogenic) marker of macrophage polarization. Differential expression of NOS and Arg1 has not been studied in HSCs yet. To identify the expression profile of arginine catabolic enzymes during HSC activation and to investigate their role in HSC activation, primary rat HSCs were cultured-activated for 7 days and expression of iNOS and Arg1 were investigated. Nor-NOHA was used as a specific and reversible arginase inhibitor. During HSC activation, iNOS expression decreased whereas Arg1 expression increased. Inhibition of Arg1 in activated HSCs efficiently inhibited collagen production but not cell proliferation. HSC activation is accompanied by a switch of arginine catabolism from iNOS to Arg1. Inhibition of Arg1 decreases collagen synthesis. Therefore, we conclude that Arg1 can be a therapeutic target for the inhibition of liver fibrogenesis.


Assuntos
Arginase , Células Estreladas do Fígado , Ratos , Animais , Células Estreladas do Fígado/metabolismo , Arginase/genética , Arginase/metabolismo , Cirrose Hepática/metabolismo , Colágeno/metabolismo , Arginina
7.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36670975

RESUMO

A molecular characterization of the main phytochemicals and antioxidant activity of Opuntia robusta (OR) fruit extract was carried out, as well as an evaluation of its hepatoprotective effect against diclofenac (DF)-induced acute liver injury was evaluated. Phenols, flavonoids and betalains were quantified, and antioxidant characterization was performed by means of the ABTS•+, DPPH and FRAP assays. UPLC-QTOF-MS/MS was used to identify the main biocompounds present in OR fruit extract was carried out via. In the in vivo model, groups of rats were treated prophylactically with the OR fruit extract, betanin and N-acteylcysteine followed by a single dose of DF. Biochemical markers of oxidative stress (MDA and GSH) and relative gene expression of the inducible antioxidant response (Nrf2, Sod2, Hmox1, Nqo1 and Gclc), cell death (Casp3) and DNA repair (Gadd45a) were analyzed. Western blot analysis was performed to measure protein levels of Nrf2 and immunohistochemical analysis was used to assess caspase-3 activity in the experimental groups. In our study, the OR fruit extract showed strong antioxidant and cytoprotective capacity due to the presence of bioactive compounds, such as betalain and phenols. We conclude that OR fruit extract or selected components can be used clinically to support patients with acute liver injury.

8.
J Nutr Biochem ; 114: 109255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623779

RESUMO

Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g. oleic acid) protect against lipotoxicity in hepatocytes. However, the effect of oleic acid on other liver cell types, in particular liver sinusoidal endothelial cells (LSECs), is unknown. Human umbilical vein endothelial cells (HUVECs) are often used as a substitute for LSECs, however, because of the unique phenotype of LSECs, HUVECs cannot represent the same biological features as LSECs. In this study, we investigate the effects of oleate and palmitate (the sodium salts of oleic acid and palmitic acid) on primary rat LSECs in comparison to their effects on HUVECs. Oleate induces necrotic cell death in LSECs, but not in HUVECs. Necrotic cell death of LSECs can be prevented by supplementation of 2-stearoylglycerol, which promotes cellular triglyceride (TG) synthesis. Repressing TG synthesis, by knocking down DGAT1 renders HUVECs sensitive to oleate-induced necrotic death. Mechanistically, oleate causes a sharp drop of intracellular ATP level and impairs mitochondrial respiration in LSECs. The combination of oleate and palmitate reverses the toxic effect of oleate in both LSECs and HUVECs. These results indicate that oleate is toxic and its toxicity can be attenuated by stimulating TG synthesis. The toxicity of oleate is characterized by mitochondrial dysfunction and necrotic cell death. Moreover, HUVECs are not suitable as a substitute model for LSECs.


Assuntos
Hepatócitos , Ácido Oleico , Ratos , Animais , Humanos , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Hepatócitos/metabolismo , Ácidos Graxos/metabolismo , Ácido Palmítico/toxicidade , Ácido Palmítico/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fígado/metabolismo , Palmitatos/toxicidade , Palmitatos/metabolismo
9.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956519

RESUMO

Liver fibrosis is a chronic disease associated with oxidative stress that has a great impact on the population mortality. Due to their antioxidant capacity, we evaluated the protective effect of Opuntia robusta fruit (Or) on liver fibrosis. A nutraceutical characterization of Or was performed and a model of fibrosis was induced with thioacetamide (TAA) in Wistar rats. Aminotransferases, reduced glutathione (GSH) and histopathology were evaluated. Or contained 436.5 ± 57 mg of Betacyanins equivalents/L., 793 mg of catechin equivalents (CAE)/100 g for flavonoids, 1118 mg of gallic acid equivalents (GAE)/100 g for total phenols, 141.14 mg/100 g for vitamin C and 429.9 µg/100 g for vitamin E. The antioxidant capacity of Or was: 2.27 mmol of Trolox® equivalents (TE)/L (DPPH), 62.2 ± 5.0 µmol TE/g (ABTS•+), 80.2 ± 11.7 µmol TE/g (FRAP), 247.9 ± 15.6 µmol TE/g (AAPH) and 15.0% of H2O2 elimination. An increase (p < 0.05) of aminotransferases and a decrease (p < 0.05) of hepatic GSH was observed in the TAA group compared to the control and the concomitant groups. Histopathology showed changes in the normal architecture of the liver treated with TAA compared to the concomitant treatments. Or contains bioactive components with antioxidant capacity, which can reduce fibrotic liver damage.

10.
Cancers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626066

RESUMO

Barrett's esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings.

11.
Toxicol Appl Pharmacol ; 436: 115858, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979142

RESUMO

BACKGROUND: The number of patients with non-alcoholic fatty liver disease (NAFLD) is rapidly increasing due to the growing epidemic of obesity. Non-alcoholic steatohepatitis (NASH), the inflammatory stage of NAFLD, is characterized by lipid accumulation in hepatocytes, chronic inflammation and hepatocyte cell death. Scopoletin and umbelliferone are coumarin-like molecules and have antioxidant, anti-cancer and anti-inflammatory effects. Cytoprotective effects of these compounds have not been described in hepatocytes and the mechanisms of the beneficial effects of scopoletin and umbelliferone are unknown. AIM: To investigate whether scopoletin and/or umbelliferone protect hepatocytes against palmitate-induced cell death. For comparison, we also tested the cytoprotective effect of scopoletin and umbelliferone against bile acid-induced cell death. METHODS: Primary rat hepatocytes were exposed to palmitate (1 mmol/L) or the hydrophobic bile acid glycochenodeoxycholic acid (GCDCA; 50 µmol/L). Apoptosis was assessed by caspase-3 activity assay, necrosis by Sytox green assay, mRNA levels by qPCR, protein levels by Western blot and production of reactive oxygen species (ROS) by fluorescence assay. RESULTS: Both scopoletin and umbelliferone protected against palmitate and GCDCA-induced cell death. Both palmitate and GCDCA induced the expression of ER stress markers. Scopoletin and umbelliferone decreased palmitate- and GCDCA-induced expression of ER stress markers, phosphorylation of the cell death signaling intermediate JNK as well as ROS production. CONCLUSION: Scopoletin and umbelliferone protect against palmitate and bile acid-induced cell death of hepatocytes by inhibition of ER stress and ROS generation and decreasing phosphorylation of JNK. Scopoletin and umbelliferone may hold promise as a therapeutic modality for the treatment of NAFLD.


Assuntos
Ácidos e Sais Biliares/farmacologia , Morte Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/farmacologia , Escopoletina/farmacologia , Umbeliferonas/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Glicoquenodesoxicólico/farmacologia , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Masculino , Necrose/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Mech Ageing Dev ; 201: 111617, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958827

RESUMO

BACKGROUND: Activated hepatic stellate cells (aHSCs) are the main effector cells during liver fibrogenesis. α-1 adrenergic antagonist doxazosin (DX) was shown to be anti-fibrotic in an in vivo model of liver fibrosis (LF), but the mechanism remains to be elucidated. Recent studies suggest that reversion of LF can be achieved by inducing cellular senescence characterized by irreversible cell-cycle arrest and acquisition of the senescence-associated secretory phenotype (SASP). AIM: To elucidate the mechanism of the anti-fibrotic effect of DX and determine whether it induces senescence. METHODS: Primary culture-activated rat HSCs were used. mRNA and protein expression were measured by qPCR and Western blot, respectively. Cell proliferation was assessed by BrdU incorporation and xCelligence analysis. TGF-ß was used for maximal HSC activation. Norepinephrine (NE), PMA and m-3M3FBS were used to activate alpha-1 adrenergic signaling. RESULTS: Expression of Col1α1 was significantly decreased by DX (10 µmol/L) at mRNA (-30 %) and protein level (-50 %) in TGF-ß treated aHSCs. DX significantly reduced aHSCs proliferation and increased expression of senescence and SASP markers. PMA and m-3M3FBS reversed the effect of DX on senescence markers. CONCLUSION: Doxazosin reverses the fibrogenic phenotype of aHSCs and induces the senescence phenotype.


Assuntos
Senescência Celular , Doxazossina/farmacologia , Células Estreladas do Fígado , Cirrose Hepática , Fenótipo Secretor Associado à Senescência/fisiologia , Transdução de Sinais/efeitos dos fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Norepinefrina/farmacologia , Ratos , Receptores Adrenérgicos alfa 1/metabolismo , Sulfonamidas/farmacologia
13.
Biomed Pharmacother ; 143: 112072, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464747

RESUMO

BACKGROUND AND PURPOSE: It has been shown that the antidiabetic drug metformin protects hepatocytes against toxicity by various stressors. Chronic or excessive consumption of diclofenac (DF) - a pain-relieving drug, leads to drug-induced liver injury via a mechanism involving mitochondrial damage and ultimately apoptotic death of hepatocytes. However, whether metformin protects against DF-induced toxicity is unknown. Recently, it was also shown that cAMP elevation is protective against DF-induced apoptotic death in hepatocytes, a protective effect primarily involving the downstream cAMP effector EPAC and preservation of mitochondrial function. This study therefore aimed at investigating whether metformin protects against DF-induced toxicity via cAMP-EPACs. EXPERIMENTAL APPROACH: Primary rat hepatocytes were exposed to 400 µmol/L DF. CE3F4 or ESI-O5 were used as EPAC-1 or 2 inhibitors respectively. Apoptosis was measured by caspase-3 activity and necrosis by Sytox green staining. Seahorse X96 assay was used to determine mitochondrial function. Mitochondrial reactive oxygen species (ROS) production was measured using MitoSox, mitochondrial MnSOD expression was determined by immunostaining and mitochondrial morphology (fusion and fission ratio) by 3D refractive index imaging. KEY RESULTS: Metformin (1 mmol/L) was protective against DF-induced apoptosis in hepatocytes. This protective effect was EPAC-dependent (mainly EPAC-2). Metformin restored mitochondrial morphology in an EPAC-independent manner. DF-induced mitochondrial dysfunction which was demonstrated by decreased oxygen consumption rate, an increased ROS production and a reduced MnSOD level, were all reversed by metformin in an EPAC-dependent manner. CONCLUSION AND IMPLICATIONS: Metformin protects hepatocytes against DF-induced toxicity via cAMP-dependent EPAC-2.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Inibidores de Ciclo-Oxigenase/toxicidade , Diclofenaco/toxicidade , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatócitos/efeitos dos fármacos , Metformina/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , AMP Cíclico/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Mol Pharmacol ; 99(4): 294-307, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33574047

RESUMO

Chronic consumption of the nonsteroidal anti-inflammatory drug diclofenac may induce drug-induced liver injury (DILI). The mechanism of diclofenac-induced liver injury is partially elucidated and involves mitochondrial damage. Elevated cAMP protects hepatocytes against bile acid-induced injury. However, it is unknown whether cAMP protects against DILI and, if so, which downstream targets of cAMP are implicated in the protective mechanism, including the classic protein kinase A (PKA) pathway or alternative pathways like the exchange protein directly activated by cAMP (EPAC). The aim of this study was to investigate whether cAMP and/or its downstream targets protect against diclofenac-induced injury in hepatocytes. Rat hepatocytes were exposed to 400 µmol/l diclofenac. Apoptosis and necrosis were measured by caspase-3 activity assay and Sytox green staining, respectively. Mitochondrial membrane potential (MMP) was measured by JC-10 staining. mRNA and protein expression were assessed by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. The cAMP-elevating agent 7ß-acetoxy-8,13-epoxy-1α,6ß,9α-trihydroxylabd-14-en-11-one (forskolin), the pan-phosphodiesterase inhibitor IBMX, and EPAC inhibitors 5,7-dibromo-6-fluoro-3,4-dihydro-2-methyl-1(2H)-quinoline carboxaldehyde (CE3F4) and ESI-O5 were used to assess the role of cAMP and its effectors, PKA or EPAC. Diclofenac exposure induced apoptotic cell death and loss of MMP in hepatocytes. Both forskolin and IBMX prevented diclofenac-induced apoptosis. EPAC inhibition but not PKA inhibition abolished the protective effect of forskolin and IBMX. Forskolin and IBMX preserved the MMP, whereas both EPAC inhibitors diminished this effect. Both EPAC1 and EPAC2 were expressed in hepatocytes and localized in mitochondria. cAMP elevation protects hepatocytes against diclofenac-induced cell death, a process primarily involving EPACs. The cAMP/EPAC pathway may be a novel target for treatment of DILI. SIGNIFICANCE STATEMENT: This study shows two main highlights. First, elevated cAMP levels protect against diclofenac-induced apoptosis in primary hepatocytes via maintenance of mitochondrial integrity. In addition, this study proposes the existence of mitochondrial cAMP-EPAC microdomains in rat hepatocytes, opening new avenues for targeted therapy in drug-induced liver injury (DILI). Both EPAC1 and EPAC2, but not protein kinase A, are responsible for this protective effect. Our findings present cAMP-EPAC as a potential target for the treatment of DILI and liver injury involving mitochondrial dysfunction.


Assuntos
AMP Cíclico/metabolismo , Diclofenaco/toxicidade , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Fatores de Troca do Nucleotídeo Guanina/agonistas , Células HEK293 , Humanos , Masculino , Ratos , Ratos Wistar
15.
Food Res Int ; 137: 109461, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233135

RESUMO

Acetaminophen (APAP) misuse or overdose is the most important cause of drug-induced acute liver failure. Overdoses of acetaminophen induce oxidative stress and liver injury by the electrophilic metabolite N-acetyl-p-benzoquinone imine (NAPQI). Plant-based medicine has been used for centuries against diseases or intoxications due to their biological activities. The aim of this study was to evaluate the therapeutic value of Opuntia robusta and Opuntia streptacantha fruit extracts against acetaminophen-induced liver damage and to identify the major biocomponents on them. Opuntia fruit extracts were obtained by peeling and squeezing each specie, followed by lyophilization. HPLC was used to characterize the extracts. The effect of the extracts against acetaminophen-induced acute liver injury was evaluated both in vivo and in vitro using biochemical, molecular and histological determinations. The results showed that betacyanins are the main components in the analyzed Opuntia fruit extracts, with betanin as the highest concentration. Therapeutic treatments with Opuntia extracts reduced biochemical, molecular and histological markers of liver (in vivo) and hepatocyte (in vitro) injury. Opuntia extracts reduced the APAP-increased expression of the stress-related gene Gadd45b. Furthermore, Opuntia extracts exerted diverse effects on the antioxidant related genes Sod2, Gclc and Hmox1, independent of their ROS-scavenging ability. Therefore, betacyanins as betanin from Opuntia robusta and Opuntia streptacantha fruits are promising nutraceutical compounds against oxidative liver damage.


Assuntos
Falência Hepática Aguda , Opuntia , Acetaminofen , Betacianinas , Frutas , Extratos Vegetais/farmacologia
16.
Toxicol Appl Pharmacol ; 404: 115183, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763355

RESUMO

Lipotoxicity plays a critical role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Hesperetin, a flavonoid derivative, has anti-oxidant, anti-inflammatory and cytoprotective properties. In the present study, we aim to examine whether hesperetin protects against palmitate-induced lipotoxic cell death and to investigate the underlying mechanisms in hepatocytes. Primary rat hepatocytes and HepG2 cells were pretreated with hesperetin for 30 min and then exposed to palmitate (1.0 mmol/L in primary rat hepatocytes; 0.5 mmol/L in HepG2 cells) in the presence or absence of hesperetin. Necrotic cell death was measured via Sytox green nuclei staining and quantified by LDH release assay. Apoptotic cell death was determined by caspase 3/7 activity and the protein level of cleaved-PARP. The unfolded protein response (UPR) was assessed by measuring the expression of GRP78, sXBP1, ATF4 and CHOP. Results show that hesperetin (50 µmol/L and 100 µmol/L) protected against palmitate-induced cell death and inhibited palmitate-induced endoplasmic reticulum (ER) stress in both primary rat hepatocytes and HepG2 cells. Hesperetin (100 µmol/L) significantly activated sXBP1/GRP78 signaling, whereas a high concentration of hesperetin (200 µmol/L) activated p-eIF2α and caused hepatic cell death. Importantly, GRP78 knockdown via siRNA abolished the protective effects of hesperetin in HepG2 cells. In conclusion, hesperetin protected against palmitate-induced hepatic cell death via activation of the sXBP1/GRP78 signaling pathway, thus inhibiting palmitate-induced ER stress. Moreover, high concentrations of hesperetin induce ER stress and subsequently cause cell death in hepatocytes.


Assuntos
Proteínas de Choque Térmico/metabolismo , Hepatócitos/efeitos dos fármacos , Hesperidina/farmacologia , Palmitatos/toxicidade , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Proteínas de Choque Térmico/genética , Hesperidina/administração & dosagem , Masculino , RNA Interferente Pequeno , Ratos , Ratos Wistar , Transdução de Sinais
17.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165857, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512191

RESUMO

BACKGROUND: The transition from steatosis to non-alcoholic steatohepatitis (NASH) is a key issue in non-alcoholic fatty liver disease (NAFLD). Observations in patients with obstructive sleep apnea syndrome (OSAS) suggest that hypoxia contributes to progression to NASH and liver fibrosis, and the release of extracellular vesicles (EVs) by injured hepatocytes has been implicated in NAFLD progression. AIM: To evaluate the effects of hypoxia on hepatic pro-fibrotic response and EV release in experimental NAFLD and to assess cellular crosstalk between hepatocytes and human hepatic stellate cells (LX-2). METHODS: HepG2 cells were treated with fatty acids and subjected to chemically induced hypoxia using the hypoxia-inducible factor 1 alpha (HIF-1α) stabilizer cobalt chloride (CoCl2). Lipid droplets, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic-associated genes were assessed. EVs were isolated by ultracentrifugation. LX-2 cells were treated with EVs from hepatocytes. The CDAA-fed mouse model was used to assess the effects of intermittent hypoxia (IH) in experimental NASH. RESULTS: Chemical hypoxia increased steatosis, oxidative stress, apoptosis and pro-inflammatory and pro-fibrotic gene expressions in fat-laden HepG2 cells. Chemical hypoxia also increased the release of EVs from HepG2 cells. Treatment of LX2 cells with EVs from fat-laden HepG2 cells undergoing chemical hypoxia increased expression pro-fibrotic markers. CDAA-fed animals exposed to IH exhibited increased portal inflammation and fibrosis that correlated with an increase in circulating EVs. CONCLUSION: Chemical hypoxia promotes hepatocellular damage and pro-inflammatory and pro-fibrotic signaling in steatotic hepatocytes both in vitro and in vivo. EVs from fat-laden hepatocytes undergoing chemical hypoxia evoke pro-fibrotic responses in LX-2 cells.


Assuntos
Vesículas Extracelulares/metabolismo , Hipóxia/patologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Apneia Obstrutiva do Sono/complicações , Animais , Comunicação Celular , Hipóxia Celular/efeitos dos fármacos , Cobalto/farmacologia , Meios de Cultura/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos não Esterificados/metabolismo , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Hipóxia/sangue , Hipóxia/etiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/etiologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo , Apneia Obstrutiva do Sono/sangue
18.
Viruses ; 12(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283772

RESUMO

Hepatitis C virus (HCV) infection is accompanied by increased oxidative stress and endoplasmic reticulum stress as a consequence of viral replication, production of viral proteins, and pro-inflammatory signals. To overcome the cellular stress, hepatocytes have developed several adaptive mechanisms like anti-oxidant response, activation of Unfolded Protein Response and autophagy to achieve cell survival. These adaptive mechanisms could both improve or inhibit viral replication, however, little is known in this regard. In this study, we investigate the mechanisms by which hepatocyte-like (Huh7) cells adapt to cellular stress in the context of HCV protein overexpression and oxidative stress. Huh7 cells stably expressing individual HCV (Core, NS3/4A and NS5A) proteins were treated with the superoxide anion donor menadione to induce oxidative stress. Production of reactive oxygen species and activation of caspase 3 were quantified. The activation of the eIF2α/ATF4 pathway and changes in the steady state levels of the autophagy-related proteins LC3 and p62 were determined either by quantitative polymerase chain reaction (qPCR) or Western blotting. Huh7 cells expressing Core or NS5A demonstrated reduced oxidative stress and apoptosis. In addition, phosphorylation of eIF2α and increased ATF4 and CHOP expression was observed with subsequent HCV Core and NS5A protein degradation. In line with these results, in liver biopsies from patients with hepatitis C, the expression of ATF4 and CHOP was confirmed. HCV Core and NS5A protein degradation was reversed by antioxidant treatment or silencing of the autophagy adaptor protein p62. We demonstrated that hepatocyte-like cells expressing HCV proteins and additionally exposed to oxidative stress adapt to cellular stress through eIF2a/ATF4 activation and selective degradation of HCV pro-oxidant proteins Core and NS5A. This selective degradation is dependent on p62 and results in increased resistance to apoptotic cell death induced by oxidative stress. This mechanism may provide a new key for the study of HCV pathology and lead to novel clinically applicable therapeutic interventions.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Adulto , Idoso , Apoptose , Autofagia , Linhagem Celular , Células Cultivadas , Feminino , Hepatite C/complicações , Hepatite C/patologia , Interações Hospedeiro-Patógeno , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165621, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786336

RESUMO

Lipotoxicity causes hepatic cell death and therefore plays an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metformin, a first-line anti-diabetic drug, has shown a potential protective effect against NAFLD. However, the underlying mechanism is still not clear. In this study, we aim to understand the molecular mechanism of the protective effect of metformin in NAFLD, focusing on lipotoxicity. Cell death was studied in HepG2 cells and primary rat hepatocytes exposed to palmitate and metformin. Metformin ameliorated palmitate-induced necrosis and apoptosis (decreased caspase-3/7 activity by 52% and 57% respectively) in HepG2 cells. Metformin also reduced palmitate-induced necrosis in primary rat hepatocytes (P < 0.05). The protective effect of metformin is not due to reducing intracellular lipid content or activation of AMPK signaling pathways. Metformin and a low concentration (0.1 µmol/L) of rotenone showed moderate inhibition on mitochondrial respiration indicated by reduced basal and maximal mitochondrial respiration and proton leak in HepG2 cells. Moreover, metformin and rotenone (0.1 µmol/L) preserved mitochondrial membrane potential in both HepG2 cells and primary rat hepatocytes. In addition, metformin and rotenone (0.1 µmol/L) also reduces reactive oxygen species (ROS) production and increase superoxide dismutase 2 (SOD2) expression. Our results establish that metformin AMPK-independently protects against palmitate-induced hepatic cell death by moderate inhibition of the mitochondrial respiratory chain, recovering mitochondrial function, decreasing cellular ROS production, and inducing SOD2 expression, indicating that metformin may have beneficial actions beyond its glucose-lowering effect and also suggests that mitochondrial complex І may be a therapeutic target in NAFLD.


Assuntos
Morte Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metformina/farmacologia , Palmitatos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
20.
Front Med (Lausanne) ; 6: 251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772929

RESUMO

Introduction: Blood C-reactive protein (CRP) and fecal calprotectin levels are routinely measured as surrogate markers of disease activity in Inflammatory Bowel Disease (IBD), but often do not correlate well with the degree of mucosal inflammation in the intestine as established by endoscopy. Therefore, novel predictive biomarkers are urgently needed that better reflect mucosal disease activity in IBD. The aim of this study was to identify a combination of serum inflammatory biomarkers predictive for endoscopic disease activity. Methods: Serum concentrations of 10 inflammatory biomarkers were analyzed in 118 IBD patients [64 Crohn's disease (CD), 54 ulcerative colitis (UC)] and 20 healthy controls. In a subset of 71 IBD patients, endoscopic disease activity was established. Non-parametric ROC estimation with bootstrap inference was used to establish the best combination of inflammatory biomarkers predicting endoscopic disease activity. Results: Six (6) inflammatory biomarkers (serum amyloid A (SAA), Eotaxin-1, IL-6, IL-8, IL-17A, and TNF-α) showed better prediction of IBD disease activity than routine measures (CRP, fecal calprotectin and HBI/SCCAI scores). The best combination of predictive inflammatory biomarkers consisted of serum SAA, IL-6, IL-8, and Eotaxin-1, showing an optimism-adjusted area under the ROC (AuROC) curve of 0.84 (95% CI: 0.73-0.94, P < 0.0001), which predicted significantly better (P = 0.002) than serum CRP levels with an AuROC of 0.57 (95% CI: 0.43-0.72, P = 0.32). Conclusion: The combination of SAA, IL-6, IL-8, and Eotaxin-1 reliably predicts endoscopic disease activity in IBD and might be valuable for monitoring disease activity and management of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...