Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(2): 021001, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277596

RESUMO

We show, for the first time, radio measurements of the depth of shower maximum (X_{max}) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence dataset, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio X_{max} resolution as a function of energy and demonstrate the ability to make competitive high-resolution X_{max} measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments.

2.
Earth Space Sci ; 9(4): e2021EA001958, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35865721

RESUMO

When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes.

3.
Sci Rep ; 11(1): 16256, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376724

RESUMO

The common phenomenon of lightning still harbors many secrets such as what are the conditions for lightning initiation and what is driving the discharge to propagate over several tens of kilometers through the atmosphere forming conducting ionized channels called leaders. Since lightning is an electric discharge phenomenon, there are positively and negatively charged leaders. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily build for radio-astronomy observations. It is observed that a negative leader rather suddenly changes, for a few milliseconds, into a mode where it radiates 100 times more VHF power than typical negative leaders after which it spawns a large number of more typical negative leaders. This mode occurs during the initial stage, soon after initiation, of all lightning flashes we have mapped (about 25). For some flashes this mode occurs also well after initiation and we show one case where it is triggered twice, some 100 ms apart. We postulate that this is indicative of a small (order of 5 km[Formula: see text]) high charge pocket. Lightning thus appears to be initiated exclusively in the vicinity of such a small but dense charge pocket.

4.
Earth Space Sci ; 8(7): e2020EA001523, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435079

RESUMO

Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 µs or 10 µs fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers.

5.
Phys Rev Lett ; 126(15): 152002, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929235

RESUMO

We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.

6.
Phys Rev Lett ; 125(12): 121106, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016715

RESUMO

We report a measurement of the energy spectrum of cosmic rays above 2.5×10^{18} eV based on 215 030 events. New results are presented: at about 1.3×10^{19} eV, the spectral index changes from 2.51±0.03(stat)±0.05(syst) to 3.05±0.05(stat)±0.10(syst), evolving to 5.1±0.3(stat)±0.1(syst) beyond 5×10^{19} eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above 5×10^{18} eV is [5.66±0.03(stat)±1.40(syst)]×10^{53} erg Mpc^{-3}.

7.
J Geophys Res Atmos ; 125(8): e2019JD031433, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32714723

RESUMO

An analysis is presented of electric fields in thunderclouds using a recently proposed method based on measuring radio emission from extensive air shower events during thunderstorm conditions. This method can be regarded as a tomography of thunderclouds using cosmic rays as probes. The data cover the period from December 2011 till August 2014. We have developed an improved fitting procedure to be able to analyze the data. Our measurements show evidence for the main negative-charge layer near the -10° isotherm. This we have seen for a winter as well as for a summer cloud where multiple events pass through the same cloud and also the vertical component of the electric field could be reconstructed. On the day of measurement of some cosmic-ray events showing evidence for strong fields, no lightning activity was detected within 100 km distance. For the winter events, the top heights were between 5 and 6 km, while in the summer, typical top heights of 9 km were seen. Large horizontal components in excess of 70 kV/m of the electric fields are observed in the middle and top layers.

8.
Phys Rev Lett ; 124(10): 105101, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216418

RESUMO

We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts (<10 µs). This is evidence for streamer formation during corona flashes that occur with each leader step, which has not been observed before in natural lightning and it could help explain x-ray emission from lightning leaders, as x rays from laboratory leaders tend to be associated with corona flashes. Surprisingly, we find that the stepping length is very similar to what was observed near the ground, however with a stepping time that is considerably larger, which as yet is not understood. These results will help to improve lightning propagation models, and eventually lightning protection models.

9.
Nature ; 568(7752): 360-363, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30996312

RESUMO

Lightning is a dangerous yet poorly understood natural phenomenon. Lightning forms a network of plasma channels propagating away from the initiation point with both positively and negatively charged ends-called positive and negative leaders1. Negative leaders propagate in discrete steps, emitting copious radio pulses in the 30-300-megahertz frequency band2-8 that can be remotely sensed and imaged with high spatial and temporal resolution9-11. Positive leaders propagate more continuously and thus emit very little high-frequency radiation12. Radio emission from positive leaders has nevertheless been mapped13-15, and exhibits a pattern that is different from that of negative leaders11-13,16,17. Furthermore, it has been inferred that positive leaders can become transiently disconnected from negative leaders9,12,16,18-20, which may lead to current pulses that both reconnect positive leaders to negative leaders11,16,17,20-22 and cause multiple cloud-to-ground lightning events1. The disconnection process is thought to be due to negative differential resistance18, but this does not explain why the disconnections form primarily on positive leaders22, or why the current in cloud-to-ground lightning never goes to zero23. Indeed, it is still not understood how positive leaders emit radio-frequency radiation or why they behave differently from negative leaders. Here we report three-dimensional radio interferometric observations of lightning over the Netherlands with unprecedented spatiotemporal resolution. We find small plasma structures-which we call 'needles'-that are the dominant source of radio emission from the positive leaders. These structures appear to drain charge from the leader, and are probably the reason why positive leaders disconnect from negative ones, and why cloud-to-ground lightning connects to the ground multiple times.

10.
J Geophys Res Atmos ; 123(5): 2861-2876, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29938144

RESUMO

Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (∼3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

12.
Nature ; 531(7592): 70-3, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935696

RESUMO

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

13.
Phys Rev Lett ; 114(16): 165001, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955053

RESUMO

We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

14.
Phys Rev Lett ; 110(13): 131302, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581307

RESUMO

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore subarray is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent scattering cross sections of weakly interacting massive particles (WIMPs) on protons, for WIMP masses in the range 20-5000 GeV/c2. These are the most stringent spin-dependent WIMP-proton cross section limits to date above 35 GeV/c2 for most WIMP models.

15.
Phys Rev Lett ; 110(15): 151105, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167245

RESUMO

We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low-energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496±66(stat)±88(syst) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range.

16.
Phys Rev Lett ; 106(14): 141101, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561178

RESUMO

IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18) eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

17.
Phys Rev Lett ; 103(19): 191301, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365914

RESUMO

Particle cascades initiated by ultrahigh energy neutrinos in the lunar regolith will emit an electromagnetic pulse with a time duration of the order of nanoseconds through a process known as the Askaryan effect. It has been shown that in an observing window around 150 MHz there is a maximum chance for detecting this radiation with radio telescopes commonly used in astronomy. In 50 h of observation time with the Westerbork Synthesis Radio Telescope array we have set a new limit on the flux of neutrinos, summed over all flavors, with energies in excess of 4x10(22) eV.

18.
Nature ; 435(7040): 313-6, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15902250

RESUMO

The nature of ultrahigh-energy cosmic rays (UHECRs) at energies >10(20) eV remains a mystery. They are likely to be of extragalactic origin, but should be absorbed within approximately 50 Mpc through interactions with the cosmic microwave background. As there are no sufficiently powerful accelerators within this distance from the Galaxy, explanations for UHECRs range from unusual astrophysical sources to exotic string physics. Also unclear is whether UHECRs consist of protons, heavy nuclei, neutrinos or gamma-rays. To resolve these questions, larger detectors with higher duty cycles and which combine multiple detection techniques are needed. Radio emission from UHECRs, on the other hand, is unaffected by attenuation, has a high duty cycle, gives calorimetric measurements and provides high directional accuracy. Here we report the detection of radio flashes from cosmic-ray air showers using low-cost digital radio receivers. We show that the radiation can be understood in terms of the geosynchrotron effect. Our results show that it should be possible to determine the nature and composition of UHECRs with combined radio and particle detectors, and to detect the ultrahigh-energy neutrinos expected from flavour mixing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...