Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(8): 5348-5357, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123603

RESUMO

Chiral 2-hydroxy acids and 2-hydroxy-4-butyrolactone derivatives are structural motifs often found in fine and commodity chemicals. Here, we report a tandem biocatalytic stereodivergent route for the preparation of these compounds using three stereoselective aldolases and two stereocomplementary ketoreductases using simple and achiral starting materials. The strategy comprises (i) aldol addition reaction of 2-oxoacids to aldehydes using two aldolases from E. coli, 3-methyl-2-oxobutanoate hydroxymethyltransferase (KPHMT Ecoli ), 2-keto-3-deoxy-l-rhamnonate aldolase (YfaU Ecoli ), and trans-o-hydroxybenzylidene pyruvate hydratase-aldolase from Pseudomonas putida (HBPA Pputida ) and (ii) subsequent 2-oxogroup reduction of the aldol adduct by ketopantoate reductase from E. coli (KPR Ecoli ) and a Δ1-piperidine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato DSM 50315 (DpkA Psyrin ) with uncovered promiscuous ketoreductase activity. A total of 29 structurally diverse compounds were prepared: both enantiomers of 2-hydroxy-4-butyrolactone (>99% ee), 21 2-hydroxy-3-substituted-4-butyrolactones with the (2R,3S), (2S,3S), (2R,3R), or (2S,3R) configuration (from 60:40 to 98:2 dr), and 6 2-hydroxy-4-substituted-4-butyrolactones with the (2S,4R) configuration (from 87:13 to 98:2 dr). Conversions of aldol adducts varied from 32 to 98%, while quantitative conversions were achieved by both ketoreductases, with global isolated yields between 20 and 45% for most of the examples. One-pot one-step cascade reactions were successfully conducted achieving isolated yields from 30 to 57%.

2.
J Med Chem ; 65(6): 4865-4877, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35235323

RESUMO

Heparin-like macromolecules are widely used in clinics as anticoagulant, antiviral, and anticancer drugs. However, the search of heparin antidotes based on small synthetic molecules to control blood coagulation still remains a challenging task due to the physicochemical properties of this anionic polysaccharide. Here, we use a dynamic combinatorial chemistry approach to optimize heparin binders with submicromolar affinity. The recognition of heparin by the most amplified members of the dynamic library has been studied with different experimental (SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed interaction model. The enzymatic assays with selected library members confirm the correlation between the dynamic covalent screening and the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays with mice show that the optimized molecules are potent antidotes with potential use as heparin reversal drugs. Overall, these results underscore the power of dynamic combinatorial chemistry targeting complex and elusive biopolymers.


Assuntos
Antídotos , Heparina , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Antídotos/farmacologia , Coagulação Sanguínea , Heparina/química , Camundongos , Polissacarídeos
3.
Transl Vis Sci Technol ; 10(10): 16, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34817617

RESUMO

Purpose: Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods: To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results: A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance: Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.


Assuntos
Células Ganglionares da Retina , Semaforina-3A , Animais , Axônios , Axotomia , Movimento Celular , Humanos
4.
ACS Catal ; 11(8): 4660-4669, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34603828

RESUMO

Three enzymatic routes toward γ-hydroxy-α-amino acids by tandem aldol addition-transamination one-pot two-step reactions are reported. The approaches feature an enantioselective aldol addition of pyruvate to various nonaromatic aldehydes catalyzed by trans-o-hydroxybenzylidene pyruvate hydratase-aldolase (HBPA) from Pseudomonas putida. This affords chiral 4-hydroxy-2-oxo acids, which were subsequently enantioselectively aminated using S-selective transaminases. Three transamination processes were investigated involving different amine donors and transaminases: (i) l-Ala as an amine donor with pyruvate recycling, (ii) a benzylamine donor using benzaldehyde lyase from Pseudomonas fluorescens Biovar I (BAL) to transform the benzaldehyde formed into benzoin, minimizing equilibrium limitations, and (iii) l-Glu as an amine donor with a double cascade comprising branched-chain α-amino acid aminotransferase (BCAT) and aspartate amino transferase (AspAT), both from E. coli, using l-Asp as a substrate to regenerate l-Glu. The γ-hydroxy-α-amino acids thus obtained were transformed into chiral α-amino-γ-butyrolactones, structural motifs found in many biologically active compounds and valuable intermediates for the synthesis of pharmaceutical agents.

5.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34577606

RESUMO

Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725-771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein-GAG interactions with potential therapeutic applications.

6.
Adv Synth Catal ; 363(11): 2866-2876, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34276272

RESUMO

A two-enzyme cascade reaction plus in situ oxidative decarboxylation for the transformation of readily available canonical and non-canonical L-α-amino acids into 2-substituted 3-hydroxy-carboxylic acid derivatives is described. The biocatalytic cascade consisted of an oxidative deamination of L-α-amino acids by an L-α-amino acid deaminase from Cosenzaea myxofaciens, rendering 2-oxoacid intermediates, with an ensuing aldol addition reaction to formaldehyde, catalyzed by metal-dependent (R)- or (S)-selective carboligases namely 2-oxo-3-deoxy-l-rhamnonate aldolase (YfaU) and ketopantoate hydroxymethyltransferase (KPHMT), respectively, furnishing 3-substituted 4-hydroxy-2-oxoacids. The overall substrate conversion was optimized by balancing biocatalyst loading and amino acid and formaldehyde concentrations, yielding 36-98% aldol adduct formation and 91- 98% ee for each enantiomer. Subsequent in situ follow-up chemistry via hydrogen peroxide-driven oxidative decarboxylation afforded the corresponding 2-substituted 3-hydroxycarboxylic acid derivatives.

7.
J Am Chem Soc ; 142(46): 19754-19762, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33147013

RESUMO

The congested nature of quaternary carbons hinders their preparation, most notably when stereocontrol is required. Here we report a biocatalytic method for the creation of quaternary carbon centers with broad substrate scope, leading to different compound classes bearing this structural feature. The key step comprises the aldol addition of 3,3-disubstituted 2-oxoacids to aldehydes catalyzed by metal dependent 3-methyl-2-oxobutanoate hydroxymethyltransferase from E. coli (KPHMT) and variants thereof. The 3,3,3-trisubstituted 2-oxoacids thus produced were converted into 2-oxolactones and 3-hydroxy acids and directly to ulosonic acid derivatives, all bearing gem-dialkyl, gem-cycloalkyl, and spirocyclic quaternary centers. In addition, some of these reactions use a single enantiomer from racemic nucleophiles to afford stereopure quaternary carbons. The notable substrate tolerance and stereocontrol of these enzymes are indicative of their potential for the synthesis of structurally intricate molecules.


Assuntos
Aldeídos/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Cetoácidos/metabolismo , Aldeídos/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/genética , Cetoácidos/química , Mutagênese Sítio-Dirigida , Estereoisomerismo , Especificidade por Substrato
8.
Angew Chem Int Ed Engl ; 59(39): 17202-17206, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32348612

RESUMO

Dynamic covalent chemistry combines in a single step the screening and synthesis of ligands for biomolecular recognition. In order to do that, a chemical entity is used as template within a dynamic combinatorial library of interconverting species, so that the stronger binders are amplified due to the efficient interaction with the target. Here we employed whole A549 living cells as template in a dynamic mixture of imines, for which amplification reflects the efficient and selective interaction with the corresponding extracellular matrix. The amplified polyamine showed strong interaction with the A549 extracellular matrix in on-cell NMR experiments, while combination of NMR, SPR, and molecular dynamics simulations in model systems provided insights on the molecular recognition event. Notably, our work pioneers the use of whole living cells in dynamic combinatorial chemistry, which paves the way towards the discovery of new bioactive molecules in a more biorelevant environment.


Assuntos
Técnicas de Química Combinatória , Matriz Extracelular/química , Iminas/química , Poliaminas/química , Células A549 , Humanos , Ligantes , Simulação de Dinâmica Molecular
9.
Adv Synth Catal ; 361(11): 2673-2687, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31680790

RESUMO

Nitrogen heterocycles are structural motifs found in many bioactive natural products and of utmost importance in pharmaceutical drug development. In this work, a stereoselective synthesis of functionalized N-heterocycles was accomplished in two steps, comprising the biocatalytic aldol addition of ethanal and simple aliphatic ketones such as propanone, butanone, 3-pentanone, cyclobutanone, and cyclopentanone to N-Cbz-protected aminoaldehydes using engineered variants of d-fructose-6-phosphate aldolase from Escherichia coli (FSA) or 2-deoxy-d-ribose-5-phosphate aldolase from Thermotoga maritima (DERA Tma ) as catalysts. FSA catalyzed most of the additions of ketones while DERA Tma was restricted to ethanal and propanone. Subsequent treatment with hydrogen in the presence of palladium over charcoal, yielded low-level oxygenated N-heterocyclic derivatives of piperidine, pyrrolidine and N-bicyclic structures bearing fused cyclobutane and cyclopentane rings, with stereoselectivities of 96-98 ee and 97:3 dr in isolated yields ranging from 35 to 79%.

10.
Eur J Med Chem ; 178: 648-666, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31226656

RESUMO

Targeting autophagy is a promising therapeutic strategy for cancer treatment. As a result, the identification of novel autophagy inhibitors is an emerging field of research. Herein, we report the development of a novel AlphaScreen HTS assay that combined with a MS-based assay and a structure-based high-throughput virtual screening have enabled the identification of benzo[cd]indol-2(1H)-one as a novel scaffold that targets Atg4B. Thus, an initial screening campaign led to the identification of NSC126353 and NSC611216 bearing a chlorohydrin moiety. Structural-activity relationship analysis of the initial hits provided an optimized lead, compound 33, bearing a 7-aminobenzo[cd]indol-2-[1H]-one scaffold and a propyl group replacing the chlorine. Inhibition of autophagy was also investigated in cells by measuring LC3-II and p62 protein levels. Moreover, the synergistic effect of 33 combined with oxaliplatin resulted in an enhanced cell death in the human colorectal adenocarcinoma cell line HT-29. We are convinced that the developed AlphaScreen and MS-based assays can be key tools enabling the high-throughput identification of novel Atg4B inhibitors. Moreover, the aminobenzo[cd]indol-2-[1H]-one scaffold represents a novel chemotype for the further development of small molecule inhibitors of Atg4B.


Assuntos
Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Lactamas/farmacologia , Naftalenos/farmacologia , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Lactamas/síntese química , Lactamas/química , Modelos Moleculares , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Relação Estrutura-Atividade
11.
ACS Catal ; 8(9): 8804-8809, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30221031

RESUMO

Asymmetric aldol addition of simple aldehydes and ketones to electrophiles is a cornerstone reaction for the synthesis of unusual sugars and chiral building blocks. We investigated d-fructose-6-phosphate aldolase from E. coli (FSA) D6X variants as catalysts for the aldol additions of ethanal and nonfunctionalized linear and cyclic aliphatic ketones as nucleophiles to nonphosphorylated hydroxyaldehydes. Thus, addition of propanone, cyclobutanone, cyclopentanone, or ethanal to 3-hydroxypropanal or (S)- or (R)-3-hydroxybutanal catalyzed by FSA D6H and D6Q variants furnished rare deoxysugars in 8-77% isolated yields with high stereoselectivity (97:3 dr and >95% ee).

12.
Angew Chem Int Ed Engl ; 57(37): 11973-11977, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-29998599

RESUMO

Despite heparin being the most widely used macromolecular drug, the design of small-molecule ligands to modulate its effects has been hampered by the structural properties of this polyanionic polysaccharide. Now a dynamic covalent selection approach is used to identify a new ligand for heparin, assembled from extremely simple building blocks. The amplified molecule strongly binds to heparin (KD in the low µm range, ITC) by a combination of electrostatic, hydrogen bonding, and CH-π interactions as shown by NMR and molecular modeling. Moreover, this ligand reverts the inhibitory effect of heparin within an enzymatic cascade reaction related to blood coagulation. This study demonstrates the power of dynamic covalent chemistry for the discovery of new modulators of biologically relevant glycosaminoglycans.


Assuntos
Heparina/metabolismo , Ligantes , Coagulação Sanguínea/efeitos dos fármacos , Heparina/química , Heparina/farmacologia , Humanos , Ligação de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrometria de Fluorescência , Eletricidade Estática
13.
Angew Chem Int Ed Engl ; 57(14): 3583-3587, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29363239

RESUMO

Pyruvate-dependent aldolases exhibit a stringent selectivity for pyruvate, limiting application of their synthetic potential, which is a drawback shared with other existing aldolases. Structure-guided rational protein engineering rendered a 2-keto-3-deoxy-l-rhamnonate aldolase variant, fused with a maltose-binding protein (MBP-YfaU W23V/L216A), capable of efficiently converting larger pyruvate analogues, for example, those with linear and branched aliphatic chains, in aldol addition reactions. Combination of these nucleophiles with N-Cbz-alaninal (Cbz=benzyloxycarbonyl) and N-Cbz-prolinal electrophiles gave access to chiral building blocks, for example, derivatives of (2S,3S,4R)-4-amino-3-hydroxy-2-methylpentanoic acid (68 %, d.r. 90:10) and the enantiomer of dolaproine (33 %, d.r. 94:6) as well as a collection of unprecedented α-amino acid derivatives of the proline and pyrrolizidine type. Conversions varied between 6-93 % and diastereomeric ratios from 50:50 to 95:5 depending on the nucleophilic and electrophilic components.


Assuntos
Aldeído Liases/química , Escherichia coli/enzimologia , Ácido Pirúvico/química , Aldeídos/química , Aminoácidos/química , Compostos Heterocíclicos com 2 Anéis/química , Modelos Moleculares , Estrutura Molecular , Prolina/análogos & derivados , Prolina/química , Ligação Proteica , Pirrolidinas/química , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Chem Commun (Camb) ; 53(39): 5441-5444, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28462976

RESUMO

New fluorogenic sensors with suitable kinetic parameters and sensitivity have been developed for the determination of sphingosine-1-phosphate lyase activity in cell lysates. The probe RBM148 can be efficiently loaded into cationic liposomes and used to determine S1PL activity in intact cells.


Assuntos
Aldeído Liases/metabolismo , Corantes Fluorescentes/química , Aldeído Liases/química , Animais , Deleção de Genes , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Estrutura Molecular
15.
Chem Commun (Camb) ; 53(30): 4274-4277, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28362010

RESUMO

A dynamic mixture of stereoisomeric macrocycles derived from glutamic acid displayed a homochiral self-selection when increasing the acetonitrile content of the aqueous mixed medium. The homochiral self-sorting required the anionic form of the side chains and increased at higher temperature, implying an entropic origin. Conformational analysis (NMR and MD simulations) allowed us to explain the observed behaviour. The results show that entropy can play a role in the homochiral self-sorting in adaptive bio-inspired chemical systems.

16.
Angew Chem Int Ed Engl ; 56(19): 5304-5307, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28387004

RESUMO

Intramolecular benzoin reactions catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I (BAL) are reported. The structure of the substrates envisaged for this reaction consists of two benzaldehyde derivatives linked by an alkyl chain. The structural requirements needed to achieve the intramolecular carbon-carbon bond reaction catalyzed by BAL were established. Thus, a linker consisting of a linear alkyl chain of three carbon atoms connected through ether-type bonds to the 2 and 2' positions of two benzaldehyde moieties, which could be substituted with either Cl, Br, or OCH3 at either the 3 and 3' or 5 and 5' positions, were suitable substrates for BAL. Reactions with 61-84 % yields of the intramolecular product and ee values between 64 and 98 %, were achieved.


Assuntos
Aldeído Liases/metabolismo , Benzoína/metabolismo , Pseudomonas fluorescens/enzimologia , Benzoína/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
17.
Eur J Med Chem ; 123: 905-915, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543882

RESUMO

Two kinds of inhibitors of the PLP-dependent enzyme sphingosine-1-phosphate lyase have been designed and tested on the bacterial (StS1PL) and the human (hS1PL) enzymes. Amino phosphates 1, 12, and 32, mimicking the intermediate aldimines of the catalytic process, were weak inhibitors on both enzyme sources. On the other hand, a series of stereodefined azido phosphates, resulting from the replacement of the amino group of the natural substrates with an azido group, afforded competitive inhibitors in the low micromolar range on both enzyme sources. This similar behavior represents an experimental evidence of the reported structural similarities for both enzymes at their active site level. Interestingly, the anti-isomers of the non-natural enantiomeric series where the most potent inhibitors on hS1PL.


Assuntos
Aldeído Liases/antagonistas & inibidores , Azidas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfatos/química , Fosfatos/farmacologia , Aldeído Liases/química , Aldeído Liases/metabolismo , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fosfatos/metabolismo , Conformação Proteica , Estereoisomerismo
18.
Bioorg Med Chem ; 24(18): 4381-4389, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475537

RESUMO

A series of potential active-site sphingosine-1-phosphate lyase (S1PL) inhibitors have been designed from scaffolds 1 and 2, arising from virtual screening using the X-ray structures of the bacterial (StS1PL) and the human (hS1PL) enzymes. Both enzymes are very similar at the active site, as confirmed by the similar experimental kinetic constants shown by the fluorogenic substrate RBM13 in both cases. However, the docking scoring functions used probably overestimated the weight of electrostatic interactions between the ligands and key active-site residues in the protein environment, which may account for the modest activity found for the designed inhibitors. In addition, the possibility that the inhibitors do not reach the enzyme active site should not be overlooked. Finally, since both enzymes show remarkable structural differences at the access channel and in the proximity to the active site cavity, caution should be taken when designing inhibitors acting around that area, as evidenced by the much lower activity found in StS1PL for the potent hS1PL inhibitor D.


Assuntos
Aldeído Liases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bactérias/enzimologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Espectrometria de Massas , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
19.
Biophys J ; 110(6): 1291-303, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028639

RESUMO

Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.


Assuntos
Glicosaminoglicanos/metabolismo , Peptídeos/metabolismo , Peptidomiméticos/metabolismo , Semaforina-3A/metabolismo , Sequência de Aminoácidos , Animais , Calorimetria , Cátions , Corantes/química , Glicosaminoglicanos/química , Heparina/metabolismo , Humanos , Azul de Metileno/química , Camundongos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptidomiméticos/química , Espectroscopia de Prótons por Ressonância Magnética , Semaforina-3A/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície , Temperatura
20.
Chemistry ; 21(40): 14122-8, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26270744

RESUMO

Apoptosis is a biological process relevant to different human diseases that is regulated through protein-protein interactions and complex formation. Peptidomimetic compounds based on linear peptoids and cyclic analogues with different ring sizes have been previously reported as potent apoptotic inhibitors. Among them, the presence of cis/trans conformers of an exocyclic tertiary amide bond in slow exchange has been characterized. This information encouraged us to perform an isosteric replacement of the amide bond by a 1,2,3-triazole moiety, in which different substitution patterns would mimic different amide rotamers. The syntheses of these restricted analogues have been carried out through an Ugi multicomponent reaction followed by an intramolecular cyclization. The unexpected formation of a ß-lactam scaffold prompted us to study the course of the intramolecular cyclization of the Ugi adducts. In order to modulate this cyclization, a small library of compounds bearing both heterocyclic scaffolds has been synthesized and their activities as apoptosis inhibitors have been evaluated.


Assuntos
Amidas/química , Apoptose/efeitos dos fármacos , Lactamas/química , Peptidomiméticos/química , Peptoides/química , Peptoides/farmacologia , Triazóis/síntese química , Ciclização , Humanos , Modelos Moleculares , Conformação Molecular , Peptidomiméticos/farmacologia , Peptoides/síntese química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...