Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114137, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38662543

RESUMO

Chromatin-associated RNAs (cRNAs) are a poorly characterized fraction of cellular RNAs that co-purify with chromatin. Their full complexity and the mechanisms regulating their packaging and chromatin association remain poorly understood. Here, we address these questions in Drosophila. We find that cRNAs constitute a heterogeneous group of RNA species that is abundant in heterochromatic transcripts. We show that heterochromatic cRNAs interact with the heterogeneous nuclear ribonucleoproteins (hnRNP) hrp36/hrp48 and that depletion of linker histone dH1 impairs this interaction. dH1 depletion induces the accumulation of RNA::DNA hybrids (R-loops) in heterochromatin and, as a consequence, increases retention of heterochromatic cRNAs. These effects correlate with increased RNA polymerase II (RNAPII) occupancy at heterochromatin. Notably, impairing cRNA assembly by depletion of hrp36/hrp48 mimics heterochromatic R-loop accumulation induced by dH1 depletion. We also show that dH1 depletion alters nucleosome organization, increasing accessibility of heterochromatin. Altogether, these perturbations facilitate annealing of cRNAs to the DNA template, enhancing R-loop formation and cRNA retention at heterochromatin.

2.
Nucleic Acids Res ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520405

RESUMO

Chromosome pairing constitutes an important level of genome organization, yet the mechanisms that regulate pairing in somatic cells and the impact on 3D chromatin organization are still poorly understood. Here, we address these questions in Drosophila, an organism with robust somatic pairing. In Drosophila, pairing preferentially occurs at loci consisting of numerous architectural protein binding sites (APBSs), suggesting a role of architectural proteins (APs) in pairing regulation. Amongst these, the anti-pairing function of the condensin II subunit CAP-H2 is well established. However, the factors that regulate CAP-H2 localization and action at APBSs remain largely unknown. Here, we identify two factors that control CAP-H2 occupancy at APBSs and, therefore, regulate pairing. We show that Z4, interacts with CAP-H2 and is required for its localization at APBSs. We also show that hyperosmotic cellular stress induces fast and reversible unpairing in a Z4/CAP-H2 dependent manner. Moreover, by combining the opposite effects of Z4 depletion and osmostress, we show that pairing correlates with the strength of intrachromosomal 3D interactions, such as active (A) compartment interactions, intragenic gene-loops, and polycomb (Pc)-mediated chromatin loops. Altogether, our results reveal new players in CAP-H2-mediated pairing regulation and the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions.

3.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034722

RESUMO

In the nucleus, chromatin is intricately structured into multiple layers of 3D organization important for genome activity. How distinct layers influence each other is not well understood. In particular, the contribution of chromosome pairing to 3D chromatin organization has been largely neglected. Here, we address this question in Drosophila, an organism that shows robust chromosome pairing in interphasic somatic cells. The extent of chromosome pairing depends on the balance between pairing and anti-pairing factors, with the anti-pairing activity of the CAP-H2 condensin II subunit being the best documented. Here, we identify the zinc-finger protein Z4 as a strong anti-pairer that interacts with and mediates the chromatin binding of CAP-H2. We also report that hyperosmotic cellular stress induces fast and reversible chromosome unpairing that depends on Z4/CAP-H2. And, most important, by combining Z4 depletion and osmostress, we show that chromosome pairing reinforces intrachromosomal 3D interactions. On the one hand, pairing facilitates RNAPII occupancy that correlates with enhanced intragenic gene-loop interactions. In addition, acting at a distance, pairing reinforces chromatin-loop interactions mediated by Polycomb (Pc). In contrast, chromosome pairing does not affect which genomic intervals segregate to active (A) and inactive (B) compartments, with only minimal effects on the strength of A-A compartmental interactions. Altogether, our results unveil the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions, unraveling the interwoven relationship between different layers of chromatin organization and the essential contribution of chromosome pairing.

4.
Nature ; 599(7885): 431-435, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789899

RESUMO

A central question in chordate evolution is the origin of sessility in adult ascidians, and whether the appendicularian complete free-living style represents a primitive or derived condition among tunicates1. According to the 'a new heart for a new head' hypothesis, the evolution of the cardiopharyngeal gene regulatory network appears as a pivotal aspect to understand the evolution of the lifestyles of chordates2-4. Here we show that appendicularians experienced massive ancestral losses of cardiopharyngeal genes and subfunctions, leading to the 'deconstruction' of two ancestral modules of the tunicate cardiopharyngeal gene regulatory network. In ascidians, these modules are related to early and late multipotency, which is involved in lineage cell-fate determination towards the first and second heart fields and siphon muscles. Our work shows that the deconstruction of the cardiopharyngeal gene regulatory network involved the regressive loss of the siphon muscle, supporting an evolutionary scenario in which ancestral tunicates had a sessile ascidian-like adult lifestyle. In agreement with this scenario, our findings also suggest that this deconstruction contributed to the acceleration of cardiogenesis and the redesign of the heart into an open-wide laminar structure in appendicularians as evolutionary adaptations during their transition to a complete pelagic free-living style upon the innovation of the food-filtering house5.


Assuntos
Evolução Biológica , Coração/anatomia & histologia , Coração/crescimento & desenvolvimento , Urocordados/anatomia & histologia , Urocordados/fisiologia , Animais , Linhagem da Célula , Redes Reguladoras de Genes , Locomoção , Miocárdio/citologia , Miocárdio/metabolismo , Urocordados/citologia , Urocordados/genética
5.
Nucleic Acids Res ; 48(8): 4147-4160, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32103264

RESUMO

Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Inativação Gênica , Histonas/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Código das Histonas , Histonas/química , Domínios Proteicos , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...