Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Phys ; 10(1): 24, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964406

RESUMO

BACKGROUND: In this study we evaluated the imaging capabilities of a novel Multi-pinhole collimator (MPH-Cardiac) specially designed for nuclear cardiology imaging on a Triple-NaI-detector based SPECT/CT system. METHODS: 99mTc point source measurements covering the field of view (FOV) were used to determine tomographic sensitivity (TSpointsource) and spatial resolution. Organ-size tomographic sensitivity (TSorgan) was measured with a left ventricle (LV) phantom filled with typical myocardial activity of a patient scan. Reconstructed image uniformity was measured with a 140 mm diameter uniform cylinder phantom. Using the LV phantom once filled with 99mTc and after with 123I, Contrast-to-noise ratio (CNR) was measured on the reconstructed images by ROI analysis on the myocardium activity and on the LV cavity. Furthermore, a polar map analysis was performed determining Spill-Over-Ratio in water (SORwater) and image noise. The results were compared with that of a dual-head parallel-hole low energy high resolution (LEHR) collimator system. A patient with suspected coronary artery disease (CAD) was scanned on the LEHR system using local protocol of 16 min total acquisition time, followed by a 4-min MPH-Cardiac scan. RESULTS: Peak TSpointsource was found to be 1013 cps/MBq in the axial center of the FOV while it was decreasing toward the radial edges. TSorgan in the CFOV was found to be 134 cps/MBq and 700 cps/MBq for the LEHR and MPH-Cardiac, respectively. Average spatial resolution throughout the FOV was 4.38 mm FWHM for the MPH-Cardiac collimator. Reconstructed image uniformity values were found to be 0.292% versus 0.214% for the LEHR and MPH-Cardiac measurements, respectively. CNR was found to be higher in case of MPH-Cardiac than for LEHR in case of 99mTc (15.5 vs. 11.7) as well as for 123I (13.5 vs. 8.3). SORwater values were found to be 28.83% and 21.1% for the 99mTc measurements, and 31.44% and 24.33% for the 123I measurements for LEHR and MPH-Cardiac, respectively. Pixel noise of the 99mTc polar maps resulted in values of 0.38% and 0.24% and of the 123I polar maps 0.62% and 0.21% for LEHR and MPH-Cardiac, respectively. Visually interpreting the patient scan images, MPH-Cardiac resulted in better image contrast compared to the LEHR technique with four times shorter scan duration. CONCLUSIONS: The significant image quality improvement achieved with dedicated MPH-Cardiac collimator on triple head SPECT/CT system paves the way for short acquisition and low-dose cardiovascular SPECT applications.

2.
Magy Onkol ; 64(2): 153-158, 2020 Jun 10.
Artigo em Húngaro | MEDLINE | ID: mdl-32520009

RESUMO

We present a possible method of Artificial Intelligence (AI) based applications that can effectively filter noise-sensitive bone scintigraphy images. The use of special AI, based on preliminary examinations, allows us to significantly reduce study time or activity administered to the patient, thus reducing the patient, assistant, and physician radiation. We present the features of the AI filtering application, its teaching process, which is important to understand, so that the physician can safely take the processed image of the AI as a "secondary reliable opinion" to help them make a more accurate diagnosis. We also examine the robustness of the algorithm, the specificities and challenges of complex clinical control.


Assuntos
Algoritmos , Inteligência Artificial , Cintilografia , Humanos , Inteligência
3.
Br J Radiol ; 91(1081): 20160690, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28008775

RESUMO

There is increasing clinical use of combined positron emission tomography and MRI, but to date there has been no clinical system developed capable of simultaneous single-photon emission computed tomography (SPECT) and MRI. There has been development of preclinical systems, but there are several challenges faced by researchers who are developing a clinical prototype including the need for the system to be compact and stationary with MRI-compatible components. The limited work in this area is described with specific reference to the Integrated SPECT/MRI for Enhanced stratification in Radio-chemo Therapy (INSERT) project, which is at an advanced stage of developing a clinical prototype. Issues of SPECT/MRI compatibility are outlined and the clinical appeal of such a system is discussed, especially in the management of brain tumour treatment.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Desenho de Equipamento , Humanos , Imageamento Tridimensional , Imagem Multimodal/instrumentação
5.
IEEE Trans Med Imaging ; 32(3): 589-600, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23221817

RESUMO

Iterative positron emission tomography (PET) reconstruction computes projections between the voxel space and the lines of response (LOR) space, which are mathematically equivalent to the evaluation of multi-dimensional integrals. The dimension of the integration domain can be very high if scattering needs to be compensated. Monte Carlo (MC) quadrature is a straightforward method to approximate high-dimensional integrals. As the numbers of voxels and LORs can be in the order of hundred millions and the projection also depends on the measured object, the quadratures cannot be precomputed, but Monte Carlo simulation should take place on-the-fly during the iterative reconstruction process. This paper presents modifications of the maximum likelihood, expectation maximization (ML-EM) iteration scheme to reduce the reconstruction error due to the on-the-fly MC approximations of forward and back projections. If the MC sample locations are the same in every iteration step of the ML-EM scheme, then the approximation error will lead to a modified reconstruction result. However, when random estimates are statistically independent in different iteration steps, then the iteration may either diverge or fluctuate around the solution. Our goal is to increase the accuracy and the stability of the iterative solution while keeping the number of random samples and therefore the reconstruction time low. We first analyze the error behavior of ML-EM iteration with on-the-fly MC projections, then propose two solutions: averaging iteration and Metropolis iteration. Averaging iteration averages forward projection estimates during the iteration sequence. Metropolis iteration rejects those forward projection estimates that would compromise the reconstruction and also guarantees the unbiasedness of the tracer density estimate. We demonstrate that these techniques allow a significant reduction of the required number of samples and thus the reconstruction time. The proposed methods are built into the Teratomo system.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...