Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 20(5): 659-674.e9, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28132834

RESUMO

Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Cálcio/metabolismo , Linhagem Celular , Descoberta de Drogas/métodos , Humanos , Mutação
2.
NMR Biomed ; 30(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859838

RESUMO

Chemical exchange saturation transfer (CEST) is an MRI technique that allows mapping of biomolecules (small metabolites, proteins) with nearly the sensitivity of conventional water proton MRI. In living organisms, several tissue-specific CEST effects have been observed and successfully applied to diagnostic imaging. In these studies, particularly the signals of proteins showed a distinct correlation with pathological changes. However, as CEST effects depend on various properties that determine and affect the chemical exchange processes, the origins of the observed signal changes remain to be understood. In this study, protein aggregation was identified as an additional process that is encoded in the CEST signals of proteins. Investigation of distinct proteins that are involved in pathological disorders, namely amyloid beta and huntingtin, revealed a significant decrease of all protein CEST signals upon controlled aggregation. This finding is of particular interest with regard to diagnostic imaging of patients with neurodegenerative diseases that involve amyloidogenesis, such as Alzheimer's or Huntington's disease. To investigate whether the observed CEST signal decrease also occurs in heterogeneous mixtures of aggregated cellular proteins, and thus prospectively in tissue, heat-shocked yeast cell lysates were employed. Additionally, investigation of different cell compartments verified the assignment of the protein CEST signals to the soluble part of the proteome. The results of in vitro experiments demonstrate that aggregation affects the CEST signals of proteins. This observation can enable hypotheses for CEST imaging as a non-invasive diagnostic tool for monitoring pathological alterations of the proteome in vivo.


Assuntos
Proteínas de Choque Térmico/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Agregados Proteicos , Proteínas/química , Leveduras/química , Fracionamento Celular , Misturas Complexas/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Cell Mol Life Sci ; 72(9): 1759-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25586562

RESUMO

Accumulating evidence implicates mitochondrial and metabolic pathways in the establishment of pluripotency, as well as in the control of proliferation and differentiation programs. From classic studies in mouse embryos to the latest findings in adult stem cells, human embryonic and induced pluripotent stem cells, an increasing number of evidence suggests that mitochondrial and metabolic-related processes might intertwine with signaling networks and epigenetic rewiring, thereby modulating cell fate decisions. This review summarizes the progresses in this exciting field of research. Dissecting these complex mitochondrial and metabolic mechanisms may lead to a more comprehensive understanding of stemness biology and to potential improvements in stem cell applications for biomedicine, cell therapy, and disease modeling.


Assuntos
Reprogramação Celular , Redes e Vias Metabólicas , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Proliferação de Células , Metabolismo Energético , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo
4.
Gerontology ; 60(2): 174-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24281332

RESUMO

Mitochondria are organelles playing pivotal roles in a range of diverse cellular functions, from energy generation to redox homeostasis and apoptosis regulation. Their loss of functionality may indeed contribute to the development of aging and age-related neurodegenerative disorders. Recently, mitochondria have been shown to exhibit peculiar features in pluripotent stem cells (PSCs). Moreover, an extensive restructuring of mitochondria has been observed during the process of cellular reprogramming, i.e. the conversion of somatic cells into induced pluripotent stem cells (iPSCs). These transformation events impact mitochondrial number, morphology, activity, cellular metabolism, and mtDNA integrity. PSCs retain the capability to self-renew indefinitely and to give rise to virtually any cell type of the body and thus hold great promise in medical research. Understanding the mitochondrial properties of PSCs, and how to modulate them, may thus help to shed light on the features of stemness and possibly increase our knowledge on cellular identity and differentiation pathways. Here, we review these recent findings and discuss their implications in the context of stem cell biology, aging research, and regenerative medicine.


Assuntos
Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Transdiferenciação Celular/genética , Transdiferenciação Celular/fisiologia , DNA Mitocondrial/genética , Metabolismo Energético , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/genética , Oxirredução , Rejuvenescimento/fisiologia
5.
Stem Cells ; 32(2): 364-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123565

RESUMO

Reprogramming somatic cells to a pluripotent state drastically reconfigures the cellular anabolic requirements, thus potentially inducing cancer-like metabolic transformation. Accordingly, we and others previously showed that somatic mitochondria and bioenergetics are extensively remodeled upon derivation of induced pluripotent stem cells (iPSCs), as the cells transit from oxidative to glycolytic metabolism. In the attempt to identify possible regulatory mechanisms underlying this metabolic restructuring, we investigated the contributing role of hypoxia-inducible factor one alpha (HIF1α), a master regulator of energy metabolism, in the induction and maintenance of pluripotency. We discovered that the ablation of HIF1α function in dermal fibroblasts dramatically hampers reprogramming efficiency, while small molecule-based activation of HIF1α significantly improves cell fate conversion. Transcriptional and bioenergetic analysis during reprogramming initiation indicated that the transduction of the four factors is sufficient to upregulate the HIF1α target pyruvate dehydrogenase kinase (PDK) one and set in motion the glycolytic shift. However, additional HIF1α activation appears critical in the early upregulation of other HIF1α-associated metabolic regulators, including PDK3 and pyruvate kinase (PK) isoform M2 (PKM2), resulting in increased glycolysis and enhanced reprogramming. Accordingly, elevated levels of PDK1, PDK3, and PKM2 and reduced PK activity could be observed in iPSCs and human embryonic stem cells in the undifferentiated state. Overall, the findings suggest that the early induction of HIF1α targets may be instrumental in iPSC derivation via the activation of a glycolytic program. These findings implicate the HIF1α pathway as an enabling regulator of cellular reprogramming.


Assuntos
Proteínas de Transporte/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Hormônios Tireóideos/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Linhagem da Célula , Reprogramação Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...