Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(3): 441-450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648764

RESUMO

The Siberian frog Rana amurensis has a uniquely high tolerance to hypoxia among amphibians, as it is able to withstand several months underwater with almost no oxygen (0.2 mg/liter) vs. several days for other studied species. Since it was hypothesized that hypoxia actives the antioxidant defense system in hypoxia-tolerant animals, one would expect similar response in R. amurensis. Here, we studied the effect of hypoxia in the Siberian frog based on the transcriptomic data, activities of antioxidant enzyme, and content of low-molecular-weight antioxidants. Exposure to hypoxia upregulated expression of three relevant transcripts (catalase in the brain and two aldo-keto reductases in the liver). The activities of peroxidase in the blood and catalase in the liver were significantly increased, while the activity of glutathione S-transferase in the liver was reduced. The content of low-molecular-weight antioxidants (thiols and ascorbate) in the heart and liver was unaffected. In general, only a few components of the antioxidant defense system were affected by hypoxia, while most remained unchanged. Comparison to other hypoxia-tolerant species suggests species-specific adaptations to hypoxia-related ROS stress.


Assuntos
Antioxidantes , Hipóxia , Ranidae , Animais , Antioxidantes/metabolismo , Ranidae/metabolismo , Hipóxia/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Catalase/metabolismo
2.
Animals (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958105

RESUMO

Anoxia is a significant challenge for most animals, as it can lead to tissue damage and death. Among amphibians, the Siberian frog Rana amurensis is the only known species capable of surviving near-zero levels of oxygen in water for a prolonged period. In this study, we aimed to compare metabolomic profiles of the liver, brain, and heart of the Siberian frog exposed to long-term oxygen deprivation (approximately 0.2 mg/L water) with those of the susceptible Far Eastern frog (Rana dybowskii) subjected to short-term hypoxia to the limits of its tolerance. One of the most pronounced features was that the organs of the Far Eastern frog contained more lactate than those of the Siberian frog despite a much shorter exposure time. The amounts of succinate were similar between the two species. Interestingly, glycerol and 2,3-butanediol were found to be significantly accumulated under hypoxia in the Siberian frog, but not in the Far Eastern frog. The role and biosynthesis of these substances are still unclear, but they are most likely formed in certain side pathways of glycolysis. Based on the obtained data, we suggest a pathway for metabolic changes in the Siberian frog under anoxia.

3.
J Comp Physiol B ; 193(4): 391-400, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37266592

RESUMO

Several earthworm species are known to be able to withstand freezing. At the biochemical level, this ability is based on cryoprotectant accumulation as well as several other mechanisms. In this study, we used 1H NMR to investigate metabolomic changes in two freeze-tolerant earthworm taxa, Dendrobaena octaedra and one of the genetic lineages of Eisenia sp. aff. nordenskioldi f. pallida. A total of 45 metabolites were quantified. High concentrations of glucose were present in frozen tissues of both taxa. No other putative cryoprotectants were found. We detected high levels of glycolysis end products and succinate in frozen animals, indicating the activation of glycolysis. Concentrations of many other substances also significantly increased. On the whole, metabolic change in response to freezing was much more pronounced in the specimens of Eisenia sp. aff. nordenskioldi f. pallida, including signs of nucleotide degradation.


Assuntos
Oligoquetos , Animais , Congelamento , Oligoquetos/fisiologia , Glucose/metabolismo
4.
Animals (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625132

RESUMO

The moor frog Rana arvalis is one of a few amphibians that can tolerate freezing to low temperatures, up to -16 °C. In this study, we performed metabolomic analysis of the liver and hindlimb muscles of frozen and control R. arvalis. We found that the moor frog synthesizes glucose and glycerol in similar concentrations as low molecular weight cryoprotectants. This is the first such case reported for the genus Rana, which was believed to use glucose only. We found that freezing upregulates glycolysis, with the accumulation of several end products: lactate, alanine, ethanol, and, possibly, 2,3-butanediol. To our knowledge, this is also the first report of ethanol as an end product of glycolysis in terrestrial vertebrates. We observed highly increased concentrations of nucleotide degradation products, implying high level of stress. The Krebs cycle arrest resulted in high concentrations of succinate, which is common for animals. However, we found almost no signs of adaptations to reoxygenation stress, with overall low levels of antioxidants. We also performed metabolomics analysis of subcutaneous ice that was found to contain glucose, glycerol, and several other substances.

5.
Biology (Basel) ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34827165

RESUMO

The Siberian salamander Salamandrella keyserlingii Dybowski, 1870 is a unique amphibian that is capable to survive long-term freezing at -55 °C. Nothing is known on the biochemical basis of this remarkable freezing tolerance, except for the fact that it uses glycerol as a low molecular weight cryoprotectant. We used 1H-NMR analysis to study quantitative changes of multiple metabolites in liver and hindlimb muscle of S. keyserlingii in response to freezing. For the majority of molecules we observed significant changes in concentrations. Glycerol content in frozen organs was as high as 2% w/w, which confirms its role as a cryoprotectant. No other putative cryoprotectants were detected. Freezing resulted in ischemia manifested as increased concentrations of glycolysis products: lactate and alanine. Unexpectedly, we detected no increase in concentrations of succinate, which accumulates under ischemia in various tetrapods. Freezing proved to be a dramatic stress with reduced adenosine phosphate pool and high levels of nucleotide degradation products (hypoxanthine, ß-alanine, and ß-aminoisobutyrate). There was also significant increase in the concentrations of choline and glycerophosphocholine, which may be interpreted as the degradation of biomembranes. Thus, we found that freezing results not only in macroscopical damage due to ice formation, but also to degradation of DNA and biomembranes.

6.
Ambio ; 50(11): 1926-1952, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34115347

RESUMO

Biological diversity is the basis for, and an indicator of biosphere integrity. Together with climate change, its loss is one of the two most important planetary boundaries. A halt in biodiversity loss is one of the UN Sustainable Development Goals. Current changes in biodiversity in the vast landmass of Siberia are at an initial stage of inventory, even though the Siberian environment is experiencing rapid climate change, weather extremes and transformation of land use and management. Biodiversity changes affect traditional land use by Indigenous People and multiple ecosystem services with implications for local and national economies. Here we review and analyse a large number of scientific publications, which are little known outside Russia, and we provide insights into Siberian biodiversity issues for the wider international research community. Case studies are presented on biodiversity changes for insect pests, fish, amphibians and reptiles, birds, mammals and steppe vegetation, and we discuss their causes and consequences.


Assuntos
Biodiversidade , Ecossistema , Animais , Aves , Mudança Climática , Conservação dos Recursos Naturais , Humanos , Sibéria
7.
Front Genet ; 11: 598196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365049

RESUMO

Eisenia nordenskioldi (Eisen, 1879) is the only autochthonous Siberian earthworm with a large distribution that ranges from tundra to steppe and broadleaved forests. This species has a very high morphological, ecological, karyological, and genetic diversity, so it was proposed that E. nordenskioldi should be split into several species. However, the phylogeny of the complex was unclear due to the low resolution of the methods used and the high diversity that should have been taken into account. We investigated this question by (1) studying the diversity of the COI gene of E. nordenskioldi throughout its range and (2) sequencing transcriptomes of different genetic lineages to infer its phylogeny. We found that E. nordenskioldi is monophyletic and is split into two clades. The first one includes the pigmented genetic lineages widespread in the northern and western parts of the distribution, and the second one originating from the southern and southeastern part of the species' range and representing both pigmented and non-pigmented forms. We propose to split the E. nordenskioldi complex into two species, E. nordenskioldi and Eisenia sp. 1 (aff. E. nordenskioldi), corresponding to these two clades. The currently recognized non-pigmented subspecies E. n. pallida will be abolished as a polyphyletic and thus a non-natural taxon, while Eisenia sp. 1 will be expanded to include several lineages earlier recognized as E. n. nordenskioldi and E. n. pallida.

8.
Sci Rep ; 10(1): 14604, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884088

RESUMO

The Siberian wood frog Rana amurensis is a recently discovered example of extreme hypoxia tolerance that is able to survive several months without oxygen. We studied metabolomic profiles of heart and liver of R. amurensis exposed to 17 days of extreme hypoxia. Without oxygen, the studied tissues experience considerable stress with a drastic decrease of ATP, phosphocreatine, and NAD+ concentrations, and concomitant increase of AMP, creatine, and NADH. Heart and liver switch to different pathways of glycolysis with differential accumulation of lactate, alanine, succinate, as well as 2,3-butanediol (previously not reported for vertebrates as an end product of glycolysis) and depletion of aspartate. We also observed statistically significant changes in concentrations of certain osmolytes and choline-related compounds. Low succinate/fumarate ratio and high glutathione levels indicate adaptations to reoxygenation stress. Our data suggest that maintenance of the ATP/ADP pool is not required for survival of R. amurensis, in contrast to anoxia-tolerant turtles.


Assuntos
Adaptação Fisiológica , Hipóxia/fisiopatologia , Metaboloma , Ranidae/metabolismo , Animais , Ranidae/crescimento & desenvolvimento
9.
Ecol Evol ; 10(11): 4531-4561, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551042

RESUMO

Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex-specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south-western France) exhibited a smaller female size and less female-biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw-tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body size-climate relationships in intraspecific units.

10.
Sci Rep ; 9(1): 13594, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30728368

RESUMO

Few of the amphibian species that occur in the Subarctic and in mountains are adapted to low sub-zero temperatures; most of these species overwinter underwater. It is believed that the distribution of the species that overwinter underwater can be limited by the low oxygen levels in waterbodies covered with ice. We show that the colonisation of the coldest areas of Northern Asia (to 71°N) by the Siberian wood frog (Rana amurensis) was facilitated by a unique adaptation, the ability to survive extreme hypoxia - and probably anoxia - in waterbodies during overwintering. The oxygen content in the overwintering waterbodies that we have studied in different parts of the range of this species fell to 0.2-0.7 mg/L without causing any large-scale mortality among the frogs. In laboratory experiments the R. amurensis survived for up to 97 days in hermetically sealed containers with water that contained less than 0.2 mg/L oxygen at temperatures of 2-3 °C, retaining the ability to respond to external stimuli. An earlier study of a broad range of frog species has shown that very few of them can survive even brief (up to 5-7 days) exposure to oxygen-free water. The revealed adaptation to prolonged extreme hypoxia is the first known case of this kind among amphibians overwintering in water.


Assuntos
Aclimatação , Ranidae/fisiologia , Adaptação Fisiológica , Animais , Regiões Árticas , Clima Frio , Hipóxia/fisiopatologia , Hipóxia/veterinária , Oxigênio/análise , Estações do Ano , Sibéria , Água/análise
11.
Cryo Letters ; 40(5): 284-290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33966066

RESUMO

BACKGROUND: Pelobates fuscus is an anuran amphibian that overwinters on land deep in soil, including regions with low sub-zero temperatures. It is not yet known if such behaviour can be explained by low cold-hardiness of the species. OBJECTIVE: To measure cold-hardiness of P. fuscus and compare the results with data about its location in winter in nature. METHODS: Lower lethal temperatures and supercooling points (SCP) were measured in specimens collected near the Saratov city in south-eastern European Russia. RESULTS: SCP of P. fuscus range from -1.7 to -2.7°C. All individuals withstood exposure of 1°Ð¡ for 20 days; but freezing is lethal to animals: one individual out of five withstood exposure of -1°Ð¡ for 3 days, and -2°Ð¡ is lethal to all animals. The condition of supercooling is unstable. CONCLUSION: The lower tolerable temperature is probably about 0°Ð¡. Low cold hardiness determines overwintering deep in substrates, which allowed the species to disperse over a large geographical range, which also includes cold regions with little snow in winter.

12.
Evol Biol ; 40: 420-438, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950617

RESUMO

The European common lizard, Zootoca vivipara, is the most widespread terrestrial reptile in the world. It occupies almost the entire Northern Eurasia and includes four viviparous and two oviparous lineages. We analysed how female snout-vent length (SVL), clutch size (CS), hatchling mass (HM), and relative clutch mass (RCM) is associated with the reproductive mode and climate throughout the species range and across the evolutionary lineages within Z. vivipara. The studied variables were scored for 1,280 females and over 3,000 hatchlings from 44 geographically distinct study samples. Across the species range, SVL of reproductive females tends to decrease in less continental climates, whereas CS corrected for female SVL and RCM tend to decrease in climates with cool summer. Both relationships are likely to indicate direct phenotypic responses to climate. For viviparous lineages, the pattern of co-variation between female SVL, CS and HM among populations is similar to that between individual females within populations. Consistent with the hypothesis that female reproductive output is constrained by her body volume, the oviparous clade with shortest retention of eggs in utero showed highest HM, the oviparous clade with longer egg retention showed lower HM, and clades with the longest egg retention (viviparous forms) had lowest HM. Viviparous populations exhibited distinctly lower HM than the other European lacertids of similar female SVL, many of them also displaying unusually high RCM. This pattern is consistent with Winkler and Wallin's model predicting a negative evolutionary link between the total reproductive investment and allocation to individual offspring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...