Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 25(3): 427-432, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778238

RESUMO

Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Distrofia Muscular de Duchenne/terapia , Animais , Animais Recém-Nascidos , Sistemas CRISPR-Cas/imunologia , Dependovirus , Modelos Animais de Doenças , Distrofina/genética , Terapia Genética/métodos , Vetores Genéticos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética
3.
Mol Ther Nucleic Acids ; 12: 283-293, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195767

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by a mutation in the dystrophin gene. Numerous gene therapies have been developed to replace or repair the defective dystrophin gene; however, these treatments cannot restore the full-length protein or completely resolve dystrophic symptoms. Secondary pathological mechanisms, such as functional ischemia and fibrosis, are thought to exacerbate the primary defect and cause the profound muscle degeneration found in dystrophic muscle. Surrogate therapies utilizing alternative therapeutic genes, or "booster genes," such as VEGFA and utrophin, seek to address these secondary mechanisms and have shown impressive benefit in mdx mice. A skeletal muscle-specific microRNA, miR-206, is particularly overexpressed in dystrophic muscle and inhibits the expression of known booster genes. Thus, we aimed to determine if miR-206 contributes to dystrophic pathology by repressing beneficial gene expression. Here, we show that AAV-mediated expression of a miR-206 decoy target effectively downregulated miR-206 expression and increased endogenous therapeutic gene expression in mature mdx muscle. Furthermore, treatment significantly improved motor function and dystrophic pathology in mdx mice. In summary, we have identified a contributing factor to the dystrophic phenotype and characterized a novel therapeutic avenue for DMD.

4.
Exp Mol Med ; 49(9): e377, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912572

RESUMO

Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.


Assuntos
Tecido Adiposo/anatomia & histologia , Tecido Adiposo/metabolismo , Folistatina/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Dependovirus/genética , Feminino , Imunofluorescência , Folistatina/química , Folistatina/genética , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Humanos , Camundongos , Mutação , Mioblastos/citologia , Mioblastos/metabolismo , Tamanho do Órgão , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas/genética , Transdução de Sinais
5.
Curr Opin Pharmacol ; 34: 56-63, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28743034

RESUMO

The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.


Assuntos
Dependovirus , Doenças Musculoesqueléticas/terapia , Animais , Humanos
6.
Mol Ther ; 23(5): 866-874, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25676679

RESUMO

Diabetes poses a substantial burden to society as it can lead to serious complications and premature death. The number of cases continues to increase worldwide. Two major causes of diabetes are insulin resistance and insulin insufficiency. Currently, there are few antidiabetic drugs available that can preserve or protect ß-cell function to overcome insulin insufficiency in diabetes. We describe a therapeutic strategy to preserve ß-cell function by overexpression of follistatin (FST) using an AAV vector (AAV8-Ins-FST) in diabetic mouse model. Overexpression of FST in the pancreas of db/db mouse increased ß-cell islet mass, decreased fasting glucose level, alleviated diabetic symptoms, and essentially doubled lifespan of the treated mice. The observed islet enlargement was attributed to ß-cell proliferation as a result of bioneutralization of myostatin and activin by FST. Overall, our study indicates overexpression of FST in the diabetic pancreas preserves ß-cell function by promoting ß-cell proliferation, opening up a new therapeutic avenue for the treatment of diabetes.


Assuntos
Folistatina/genética , Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Biomarcadores , Proliferação de Células , Dependovirus/classificação , Dependovirus/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Modelos Animais de Doenças , Folistatina/metabolismo , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Insulina/sangue , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/metabolismo , Ligantes , Masculino , Camundongos , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sorogrupo , Transdução de Sinais , Proteínas Smad/metabolismo , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...