Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10940-10950, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526327

RESUMO

Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 µM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 µM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.

2.
Heliyon ; 9(9): e19622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810164

RESUMO

Water pollution caused by the release of organic pollutants is a major environmental concern worldwide. These pollutants can have harmful effects on aquatic ecosystems and the organisms living within them, as well as on human health when contaminated water is consumed. It is essential to implement proper treatment and management strategies to prevent and mitigate water pollution. Moreover, the major untreated industrial effluents are synthetic organic compounds especially 2,4,6-trichlorophenol (TCP) which cause several environmental issues and heath related problems in humans. To cope with this problem, an excellent 2D porous material based on p-DMAC4/GO composite has been synthesized as adsorbent material for the effective removal of 2,4,6-trichlorophenol pollutant from wastewater. In this regard, the advanced analytical tools such as Fourier-Transform infrared (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray spectroscopy (EDS) were used for its characterization. The results justified the chemical composition, excellent crystalline nature, surface morphology and elemental composition of the synthesized composite material. The synthesized adsorbent material showed 95% adsorption of TCP from wastewater system at optimal conditions i.e., pH (6), adsorbent dosage (30 mg) and shaking time (60 min). The mathematical models such as isotherms, thermodynamics and kinetics studies validate the nature of adsorption process of TCP pollutant. The adsorption data found to be best fitted with Langmuir isotherms (R2 = 0.99); whereas kinetic study suggested the pseudo-second-order nature of reaction with R2 = 0.99. The thermodynamics study confirmed the spontaneous and endothermic nature of the TCP pollutant onto the surface of p-DMAC4/GO material. Moreover, the results of current work were also compared with existing reported adsorbents and data suggested the higher efficiency, feasibility, and reusability of p-DMAC4/GO material to remove the TCP pollutant from the wastewater system.

3.
Anal Sci ; 39(12): 1981-1992, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642921

RESUMO

In the current study, one of the outstanding facile and simple protocols is proposed for the synthesis of copper nanoparticles (CuNPs) using NaBH4 as a reducing agent and p-tetranitrocalix[4]arene (p-TNC4) as a capping agent. According to our knowledge, no such technique is available in the literature for colorimetric detection of cyclophosphamide (CPA) using CuNPs at the trace level. The well-organized synthesis was confirmed via advanced spectroscopic techniques. The crystallite size, shape, phase purity, and morphological characteristics were determined via XRD, AFM, FT-IR, and UV-visible spectroscopy. At the optimal conditions for CPA detection, the sensor reveals an excellent sensitivity, selectivity, as well as stability with LOD and LOQ 20 nM and 60 nM, respectively. However, the proposed sensor showed excellent potential and selectivity for the sensing of colorimetric detection of CPA that can be effectively applied to real blood serum samples. The proposed approach is better suited as compared to reported protocols in terms of handling, simplicity, economic, energy consumption, reproducibility, and excellent performance in a very short time.


Assuntos
Cobre , Nanopartículas Metálicas , Cobre/química , Colorimetria/métodos , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Reprodutibilidade dos Testes
4.
Environ Sci Pollut Res Int ; 28(42): 58994-59002, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32036535

RESUMO

The extensive release of heavy metals into the natural water bodies has become globally prevalent from past few decades. Heavy metal toxicity is becoming a serious threat to human and the environment. Due to their prolonged half-life, potential accumulation in different parts of body, and non-biodegradability, metal ions are being obvious entities that can cause several hazardous health risks. A number of methods have been developed for the detection of heavy/toxic metals based on sensors. Among the various new technologies, chemical and optical nano sensors are emerging technology to detect toxic heavy metals. Several nano sensors have been developed using nano materials, synthesized from green or chemical methods. The nano sensors are convenient to prepare and provide enhanced limit of detection, limit of quantification, and onsite detection. This review covers the recent work reported from 2013 to 2019 for the detection of heavy metals using sensors based on nano materials synthesized by different routes. Graphical abstract.


Assuntos
Metais Pesados , Nanoestruturas , Humanos , Íons , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...