Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Assist Reprod Genet ; 35(1): 71-79, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28936565

RESUMO

PURPOSE: Neutral red (NR) may assist identification of preantral follicles in pieces of cortical tissue prior to cryopreservation in cancer patients requesting fertility preservation. This study is the first to analyze this effect by follicle growth rate after long-term culture in primates. METHODS: Ovarian cortex was obtained from adult rhesus macaques, was cut into fragments, and was incubated with NR. Secondary follicles were readily visualized following NR staining and then were encapsulated into alginate beads and cultured individually for 4 weeks in αMEM media supplemented with 10 ng/ml FSH at 5% O2. RESULTS: The survival rates of secondary follicles during culture were similar between those derived from control tissue (71 ± 13%) and those treated with NR (68 ± 9%). The proportion of surviving follicles that formed an antrum were also similar in both groups (70 ± 17% control; 48 ± 24% NR-treated). Follicle diameters were not different between control follicles (184 ± 5µm) and those stained with NR (181 ± 7 µm) on the day of isolation. The percentages of surviving follicles within three cohorts based on their diameters at week 4 of culture were similar between the control group and NR-stained tissue group, fast-grow follicles (24 ± 6% vs. 13 ± 10%), slow-grow follicles (66 ± 5% vs. 60 ± 9%), or no-grow (10 ± 9% vs. 27 ± 6%), respectively. There were no differences in follicle diameters between groups during the culture period. Pre-exposure of secondary follicles to NR diminished their capacity to produce both estradiol and androstenedione by week 4 of culture, when follicles are exhibiting an antrum. Inhibitory effects of NR on steroid production by slow-grow follicles was less pronounced. CONCLUSIONS: NR does not affect secondary follicle survival, growth, and antrum formation during long-term culture, but steroid hormone production by fast-grow follicles is compromised. NR can be used as a non-invasive tool for in situ identification of viable secondary follicles in ovarian cortex before tissue cryopreservation without affecting follicle survival and growth in vitro. Whether maturation or developmental competence of oocytes derived from antral follicles in 3D culture that were previously isolated from NR-stained tissue is normal or compromised remains to be determined. Likewise, the functional consequences of pre-exposure to NR prior to ovarian cortical tissue cryopreservation and transplantation are unknown.


Assuntos
Técnicas de Cultura de Células/métodos , Macaca mulatta , Vermelho Neutro/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Sobrevivência Celular , Feminino , Folículo Ovariano/citologia , Alicerces Teciduais
2.
Zygote ; 25(2): 222-230, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28069092

RESUMO

This study aimed to evaluate the embryo development competence, the nuclear maturation and the viability of germinal vesicle (GV) and metaphase II (MII) oocytes vitrified by the Cryotop method. Cumulus-oocyte complexes were derived from bovine ovaries and three experiments were conducted. In Experiment 1, GV oocytes were vitrified and underwent in vitro maturation (IVM) or not and their nuclear maturation was assessed by orcein staining. In Experiment 2, GV oocytes and MII oocytes were vitrified or not and the viability was assessed by calcein/ethidium homodimer-1 staining. In Experiment 3, MII oocytes matured before or after vitrification were submitted to in vitro fertilization (IVF) and parthenogenetic activation (PA) in order to evaluate embryo development. No difference was found for the nuclear maturation rate in the GV group (50%) and the GV control group (67%; P = 0.23) and for viability rate (56%; 77%; P = 0.055, respectively). However, in the MII group (27%) viability was significantly lower than that of the MII control group (84%; P < 0.0001). The cleavage rate by IVF and PA was similar in the GV group and the MII group. In contrast, vitrified MII oocytes showed no capacity for blastocyst development after IVF or PA and vitrified GV oocytes were able to develop to blastocysts only after PA, but not after IVF. In conclusion, oocyte vitrification by the Cryotop method reduced the capacity for embryo development. Vitrification of GV oocytes, however, did not influence the capacity of meiotic nuclear maturation and they exhibited higher viability following vitrification at the MII stage.


Assuntos
Criopreservação/veterinária , Crioprotetores/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fertilização in vitro/veterinária , Oócitos/efeitos dos fármacos , Partenogênese , Vitrificação , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Bovinos , Criopreservação/métodos , Feminino , Fertilização in vitro/métodos , Masculino , Oócitos/citologia , Oogênese/efeitos dos fármacos , Oogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...