Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Res Cardiol ; 109(2): 137-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31144065

RESUMO

BACKGROUND: Extracellular nucleotide metabolism contributes to chronic inflammation, cell differentiation, and tissue mineralization by controlling nucleotide and adenosine concentrations and hence its purinergic effects. This study investigated location-specific changes of extracellular nucleotide metabolism in aortic valves of patients with calcific aortic valve disease (CAVD). Individual ecto-enzymes and adenosine receptors involved were analyzed together with correlation with CAVD severity and risk factors. RESULTS: Nucleotide and adenosine degradation rates were adversely modified on the aortic surface of stenotic valve as compared to ventricular side, including decreased ATP removal (1.25 ± 0.35 vs. 2.24 ± 0.61 nmol/min/cm2) and adenosine production (1.32 ± 0.12 vs. 2.49 ± 0.28 nmol/min/cm2) as well as increased adenosine deamination (1.28 ± 0.31 vs. 0.67 ± 0.11 nmol/min/cm2). The rates of nucleotide to adenosine conversions were lower, while adenosine deamination was higher on the aortic sides of stenotic vs. non-stenotic valve. There were no differences in extracellular nucleotide metabolism between aortic and ventricular sides of non-stenotic valves. Furthermore, nucleotide degradation rates, measured on aortic side in CAVD (n = 62), negatively correlated with echocardiographic and biochemical parameters of disease severity (aortic jet velocity vs. ATP hydrolysis: r = - 0.30, p < 0.05; vs. AMP hydrolysis: r = - 0.44, p < 0.001; valvular phosphate concentration vs. ATP hydrolysis: r = - 0.26, p < 0.05; vs. AMP hydrolysis: r = - 0.25, p = 0.05) while adenosine deamination showed positive correlation trend with valvular phosphate deposits (r = 0.23, p = 0.07). Nucleotide and adenosine conversion rates also correlated with CAVD risk factors, including hyperlipidemia (AMP hydrolysis vs. serum LDL cholesterol: r = - 0.28, p = 0.05; adenosine deamination vs. total cholesterol: r = 0.25, p = 0.05; LDL cholesterol: r = 0.28, p < 0.05; triglycerides: r = 0.32, p < 0.05), hypertension (adenosine deamination vs. systolic blood pressure: r = 0.28, p < 0.05) and thrombosis (ATP hydrolysis vs. prothrombin time: r = - 0.35, p < 0.01). Functional assays as well as histological and immunofluorescence, flow cytometry and RT-PCR studies identified all major ecto-enzymes engaged in nucleotide metabolism in aortic valves that included ecto-nucleotidases, alkaline phosphatase, and ecto-adenosine deaminase. We have shown that changes in nucleotide-converting ecto-enzymes were derived from their altered activities on valve cells and immune cell infiltrate. We have also demonstrated a presence of A1, A2a and A2b adenosine receptors with diminished expression of A2a and A2b in stenotic vs. non-stenotic valves. Finally, we revealed that augmenting adenosine effects by blocking adenosine deamination with deoxycoformycin decreased aortic valve thickness and reduced markers of calcification via adenosine-dependent pathways in a mouse model of CAVD. CONCLUSIONS: This work highlights profound changes in extracellular nucleotide and adenosine metabolism in CAVD. Altered extracellular nucleotide hydrolysis and degradation of adenosine in stenotic valves may affect purinergic responses to support a pro-stenotic milieu and valve calcification. This emphasizes a potential mechanism and target for prevention and therapy. .


Assuntos
Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Estenose da Valva Aórtica/enzimologia , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Calcinose/enzimologia , Hidrolases/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Apirase/metabolismo , Calcinose/diagnóstico por imagem , Calcinose/patologia , Células Cultivadas , Desaminação , Modelos Animais de Doenças , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Hidrólise , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P1/metabolismo , Índice de Gravidade de Doença
2.
J Mol Cell Cardiol ; 128: 62-76, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30641086

RESUMO

Vascular inflammation is an important factor in the pathophysiology of cardiovascular diseases, such as atherosclerosis. Changes in the extracellular nucleotide and in particular adenosine catabolism may alter a chronic inflammation and endothelial activation. This study aimed to evaluate the relation between vascular ecto-adenosine deaminase (eADA) activity and endothelial activation in humans and to analyze the effects of LPS-mediated inflammation on this activity as well as mechanisms of its increase. Moreover, we investigated a therapeutic potential of ADA inhibition by deoxycofromycin (dCF) for endothelial activation. We demonstrated a positive correlation of vascular eADA activity and ADA1 mRNA expression with endothelial activation parameters in humans with atherosclerosis. The activation of vascular eADA was also observed under LPS stimulation in vivo along with endothelial activation, an increase in markers of inflammation and alterations in the lipid profile of a rat model. Ex vivo and in vitro studies on human specimen demonstrated that at an early stage of vascular pathology, eADA activity originated from activated endothelial cells, while at later stages also from an inflammatory infiltrate. We proposed that LPS-stimulated increase in endothelial adenosine deaminase activity could be a result of IL-6/JAK/STAT pathway activation, since the lack of IL-6 in mice was associated with lower vascular and plasma eADA activities. Furthermore, the inhibitors of JAK/STAT pathway decreased LPS-stimulated adenosine deaminase activity in endothelial cells. We demonstrated that cell surface eADA activity could be additionally regulated by transcytosis pathways, as exocytosis inhibitors including lipid raft inhibitor, methyl-ß-cyclodextrin decreased LPS-induced eADA activity. This suggests that cholesterol-dependent protein externalization mediated by lipid rafts could be an important factor in the eADA increase. Moreover, endocytosis inhibitors and exocytosis activators increased this activity on the cell surface. Furthermore, the inhibition of adenosine deaminase in endothelial cells in vitro attenuated LPS-mediated IL-6 release and soluble ICAM-1 and VCAM-1 concentration in the incubation medium through the restoration of the extracellular adenosine pool and adenosine receptor-dependent pathways. This study demonstrated that the vascular endothelial eADA activity remains under control of inflammatory mediators acting through JAK/STAT pathway that could be further modified by dyslipidemic-dependent exocytosis and transcytosis pathways. Inhibition of eADA blocked endothelial activation suggesting a crucial role of this enzyme in the control of vascular inflammation. This supports the concept of eADA targeted vascular protection therapy.


Assuntos
Adenosina Desaminase/genética , Aorta/metabolismo , Aterosclerose/genética , Inflamação/genética , Adenosina/genética , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/patologia , Membrana Celular/efeitos dos fármacos , Colesterol/genética , Colesterol/metabolismo , Células Endoteliais/enzimologia , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Inflamação/enzimologia , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/genética , Janus Quinases/genética , Lipopolissacarídeos/farmacologia , Metabolismo/genética , Camundongos , Pentostatina/farmacologia , Ratos , Fatores de Transcrição STAT/genética , Molécula 1 de Adesão de Célula Vascular/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-30587087

RESUMO

Animal models are widely used in atherosclerosis research. The most useful, economic and valid is mouse genetic model of this pathology. Purinergic signaling is an important mechanism regulating processes involved in the vascular inflammation and atherosclerosis. The aim of this study was to measure vascular activities of nucleotide and adenosine-degrading ecto-enzymes in different strains of mice and to compare them to atherosclerotic susceptibility. The vascular extracellular nucleotide catabolism pathway was analyzed in 6-month-old male genetically unmodified mouse strains: FVB/NJ, DBA/2J, BALB/c, C57Bl/6J and mouse knock-outs on C57Bl/6J background for LDLR (LDLR-/-) and for ApoE and LDLR (ApoE-/-LDLR-/-). LDLR-/- mice were a model of moderate hypercholesterolemia, while ApoE-/-LDLR-/- mice, a model of severe hypercholesterolemia with advanced atherosclerosis. FVB/NJ, DBA/2J and BALB/c mice showed high rates of vascular extracellular AMP hydrolysis and low activity of adenosine deamination. In turn, all mice with the C57Bl/6J background expressed diminished activity of vascular AMP hydrolysis. Mice with genetically-induced hyperlipidemia and atherosclerosis on the C57Bl/6J background revealed increased ecto-adenosine deaminase activity. Mouse strains that were resistant to atherosclerosis (FVB/NJ, DBA/2J, BALB/c) exhibited a protective extracellular vascular ecto-enzyme pattern directed toward the production of anti-inflammatory and anti-atherosclerotic adenosine. In turn, mice with genetically induced hypercholesterolemia and atherosclerosis expressed disturbed activities of ecto-5'nucleotidase and ecto-adenosine deaminase related to decreased production and increased degradation of extracellular adenosine.


Assuntos
Adenosina/metabolismo , Aterosclerose/metabolismo , Vasos Sanguíneos/metabolismo , Nucleotídeos/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Análise de Variância , Animais , Apolipoproteínas E/metabolismo , Glicemia/análise , Glicemia/metabolismo , Vasos Sanguíneos/citologia , Modelos Animais de Doenças , Hipercolesterolemia/metabolismo , Lipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Receptores de LDL/metabolismo
4.
J Cell Mol Med ; 22(12): 5939-5954, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291675

RESUMO

The activity of a cell-surface ecto-adenosine deaminase (eADA) is markedly increased in the endothelial activation and vascular inflammation leading to decreased adenosine concentration and alterations in adenosine signalling. Depending on the specific pathway activated, extracellular purines mediate host cell response or regulate growth and cytotoxicity on tumour cells. The aim of this study was to test the effects of adenosine deaminase inhibition by 2'deoxycoformycin (dCF) on the breast cancer development. dCF treatment decreased a tumour growth and a final tumour mass in female BALB/c mice injected orthotopically with 4T1 cancer cells. dCF also counteracted cancer-induced endothelial dysfunction in orthotopic and intravenous 4T1 mouse breast cancer models. In turn, this low dCF dose had a minor effect on immune stimulation exerted by 4T1 cell implantation. In vitro studies revealed that dCF suppressed migration and invasion of 4T1 cells via A2a and A3 adenosine receptor activation as well as 4T1 cell adhesion and transmigration through the endothelial cell layer via A2a receptor stimulation. Similar effects of dCF were observed in human breast cancer cells. Moreover, dCF improved a barrier function of endothelial cells decreasing its permeability. This study highlights beneficial effects of adenosine deaminase inhibition on breast cancer development. The inhibition of adenosine deaminase activity by dCF reduced tumour size that was closely related to the decreased aggressiveness of tumour cells by adenosine receptor-dependent mechanisms and endothelial protection.


Assuntos
Inibidores de Adenosina Desaminase/farmacologia , Progressão da Doença , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Receptores Purinérgicos P1/metabolismo , Adenosina Desaminase/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Espaço Extracelular/metabolismo , Feminino , Humanos , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/irrigação sanguínea , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Nucleotídeos/sangue , Pentostatina/farmacologia , Fenótipo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...