Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609390

RESUMO

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Actinas , Linfócitos T CD8-Positivos , Citoesqueleto , Semaforina-3A/genética
3.
Biol Imaging ; 4: e2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516631

RESUMO

Imaging platforms for generating highly multiplexed histological images are being continually developed and improved. Significant improvements have also been made in the accuracy of methods for automated cell segmentation and classification. However, less attention has focused on the quantification and analysis of the resulting point clouds, which describe the spatial coordinates of individual cells. We focus here on a particular spatial statistical method, the cross-pair correlation function (cross-PCF), which can identify positive and negative spatial correlation between cells across a range of length scales. However, limitations of the cross-PCF hinder its widespread application to multiplexed histology. For example, it can only consider relations between pairs of cells, and cells must be classified using discrete categorical labels (rather than labeling continuous labels such as stain intensity). In this paper, we present three extensions to the cross-PCF which address these limitations and permit more detailed analysis of multiplex images: topographical correlation maps can visualize local clustering and exclusion between cells; neighbourhood correlation functions can identify colocalization of two or more cell types; and weighted-PCFs describe spatial correlation between points with continuous (rather than discrete) labels. We apply the extended PCFs to synthetic and biological datasets in order to demonstrate the insight that they can generate.

4.
Nat Commun ; 14(1): 7216, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940670

RESUMO

Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.


Assuntos
COVID-19 , Neutrófilos , Humanos , Linfócitos T CD8-Positivos , Pulmão , Linfócitos T Citotóxicos
5.
PLoS Comput Biol ; 19(3): e1010994, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972297

RESUMO

We introduce a new spatial statistic, the weighted pair correlation function (wPCF). The wPCF extends the existing pair correlation function (PCF) and cross-PCF to describe spatial relationships between points marked with combinations of discrete and continuous labels. We validate its use through application to a new agent-based model (ABM) which simulates interactions between macrophages and tumour cells. These interactions are influenced by the spatial positions of the cells and by macrophage phenotype, a continuous variable that ranges from anti-tumour to pro-tumour. By varying model parameters that regulate macrophage phenotype, we show that the ABM exhibits behaviours which resemble the 'three Es of cancer immunoediting': Equilibrium, Escape, and Elimination. We use the wPCF to analyse synthetic images generated by the ABM. We show that the wPCF generates a 'human readable' statistical summary of where macrophages with different phenotypes are located relative to both blood vessels and tumour cells. We also define a distinct 'PCF signature' that characterises each of the three Es of immunoediting, by combining wPCF measurements with the cross-PCF describing interactions between vessels and tumour cells. By applying dimension reduction techniques to this signature, we identify its key features and train a support vector machine classifier to distinguish between simulation outputs based on their PCF signature. This proof-of-concept study shows how multiple spatial statistics can be combined to analyse the complex spatial features that the ABM generates, and to partition them into interpretable groups. The intricate spatial features produced by the ABM are similar to those generated by state-of-the-art multiplex imaging techniques which distinguish the spatial distribution and intensity of multiple biomarkers in biological tissue regions. Applying methods such as the wPCF to multiplex imaging data would exploit the continuous variation in biomarker intensities and generate more detailed characterisation of the spatial and phenotypic heterogeneity in tissue samples.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Simulação por Computador , Fenótipo , Macrófagos/patologia
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34625491

RESUMO

Highly resolved spatial data of complex systems encode rich and nonlinear information. Quantification of heterogeneous and noisy data-often with outliers, artifacts, and mislabeled points-such as those from tissues, remains a challenge. The mathematical field that extracts information from the shape of data, topological data analysis (TDA), has expanded its capability for analyzing real-world datasets in recent years by extending theory, statistics, and computation. An extension to the standard theory to handle heterogeneous data is multiparameter persistent homology (MPH). Here we provide an application of MPH landscapes, a statistical tool with theoretical underpinnings. MPH landscapes, computed for (noisy) data from agent-based model simulations of immune cells infiltrating into a spheroid, are shown to surpass existing spatial statistics and one-parameter persistent homology. We then apply MPH landscapes to study immune cell location in digital histology images from head and neck cancer. We quantify intratumoral immune cells and find that infiltrating regulatory T cells have more prominent voids in their spatial patterns than macrophages. Finally, we consider how TDA can integrate and interrogate data of different types and scales, e.g., immune cell locations and regions with differing levels of oxygenation. This work highlights the power of MPH landscapes for quantifying, characterizing, and comparing features within the tumor microenvironment in synthetic and real datasets.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Macrófagos/citologia , Linfócitos T Reguladores/citologia , Hipóxia Tumoral/fisiologia , Microambiente Tumoral/imunologia , Contagem de Células/métodos , Biologia Computacional/métodos , Simulação por Computador , Análise de Dados , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Macrófagos/imunologia , Esferoides Celulares , Linfócitos T Reguladores/imunologia
7.
Clin Cancer Res ; 27(9): 2459-2469, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33597271

RESUMO

PURPOSE: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.


Assuntos
Atovaquona/farmacologia , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Atovaquona/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Metabolismo Energético , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fator de Transcrição STAT3/metabolismo
8.
Sci Rep ; 10(1): 18624, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122646

RESUMO

Digital pathology enables computational analysis algorithms to be applied at scale to histological images. An example is the identification of immune cells within solid tumours. Image analysis algorithms can extract precise cell locations from immunohistochemistry slides, but the resulting spatial coordinates, or point patterns, can be difficult to interpret. Since localisation of immune cells within tumours may reflect their functional status and correlates with patient prognosis, novel descriptors of their spatial distributions are of biological and clinical interest. A range of spatial statistics have been used to analyse such point patterns but, individually, these approaches only partially describe complex immune cell distributions. In this study, we apply three spatial statistics to locations of CD68+ macrophages within human head and neck tumours, and show that images grouped semi-quantitatively by a pathologist share similar statistics. We generate a synthetic dataset which emulates human samples and use it to demonstrate that combining multiple spatial statistics with a maximum likelihood approach better predicts human classifications than any single statistic. We can also estimate the error associated with our classifications. Importantly, this methodology is adaptable and can be extended to other histological investigations or applied to point patterns outside of histology.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Macrófagos/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Algoritmos , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Estudos de Coortes , Humanos , Funções Verossimilhança
9.
PLoS Comput Biol ; 16(8): e1007961, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810174

RESUMO

Tumour spheroids are widely used as an in vitro assay for characterising the dynamics and response to treatment of different cancer cell lines. Their popularity is largely due to the reproducible manner in which spheroids grow: the diffusion of nutrients and oxygen from the surrounding culture medium, and their consumption by tumour cells, causes proliferation to be localised at the spheroid boundary. As the spheroid grows, cells at the spheroid centre may become hypoxic and die, forming a necrotic core. The pressure created by the localisation of tumour cell proliferation and death generates an cellular flow of tumour cells from the spheroid rim towards its core. Experiments by Dorie et al. showed that this flow causes inert microspheres to infiltrate into tumour spheroids via advection from the spheroid surface, by adding microbeads to the surface of tumour spheroids and observing the distribution over time. We use an off-lattice hybrid agent-based model to re-assess these experiments and establish the extent to which the spatio-temporal data generated by microspheres can be used to infer kinetic parameters associated with the tumour spheroids that they infiltrate. Variation in these parameters, such as the rate of tumour cell proliferation or sensitivity to hypoxia, can produce spheroids with similar bulk growth dynamics but differing internal compositions (the proportion of the tumour which is proliferating, hypoxic/quiescent and necrotic/nutrient-deficient). We use this model to show that the types of experiment conducted by Dorie et al. could be used to infer spheroid composition and parameters associated with tumour cell lines such as their sensitivity to hypoxia or average rate of proliferation, and note that these observations cannot be conducted within previous continuum models of microbead infiltration into tumour spheroids as they rely on resolving the trajectories of individual microbeads.


Assuntos
Modelos Biológicos , Esferoides Celulares , Células Tumorais Cultivadas , Animais , Fenômenos Biomecânicos , Morte Celular/fisiologia , Hipóxia Celular/fisiologia , Proliferação de Células/fisiologia , Biologia Computacional , Humanos , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/fisiologia
10.
Proc Biol Sci ; 286(1904): 20190730, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161905

RESUMO

In both cells and animals, cannibalism can transfer harmful substances from the consumed to the consumer. Macrophages are immune cells that consume their own dead via a process called cannibalistic efferocytosis. Macrophages that contain harmful substances are found at sites of chronic inflammation, yet the role of cannibalism in this context remains unexplored. Here we take mathematical and experimental approaches to study the relationship between cannibalistic efferocytosis and substance accumulation in macrophages. Through mathematical modelling, we deduce that substances which transfer between individuals through cannibalism will concentrate inside the population via a coalescence process. This prediction was confirmed for macrophage populations inside a closed system. We used image analysis of whole slide photomicrographs to measure both latex microbead and neutral lipid accumulation inside murine bone marrow-derived macrophages (104-[Formula: see text]) following their stimulation into an inflammatory state ex vivo. While the total number of phagocytosed beads remained constant, cell death reduced cell numbers and efferocytosis concentrated the beads among the surviving macrophages. As lipids are also conserved during efferocytosis, these cells accumulated lipid derived from the membranes of dead and consumed macrophages (becoming macrophage foam cells). Consequently, enhanced macrophage cell death increased the rate and extent of foam cell formation. Our results demonstrate that cannibalistic efferocytosis perpetuates exogenous (e.g. beads) and endogenous (e.g. lipids) substance accumulation inside macrophage populations. As such, cannibalism has similar detrimental consequences in both cells and animals.


Assuntos
Macrófagos/fisiologia , Fagocitose , Animais , Morte Celular , Células Cultivadas , Células Espumosas/citologia , Células Espumosas/metabolismo , Células Espumosas/fisiologia , Metabolismo dos Lipídeos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...