Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Commun ; 10(1): 82, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622301

RESUMO

Mantle plume-related magmas typically have higher chalcophile and siderophile element (CSE) contents than mid-ocean ridge basalts (MORB). These differences are often attributed to sulfide-under-saturation of plume-related melts. However, because of eruption-related degassing of sulfur (S) and the compositional, pressure, temperature and redox effects on S-solubility, understanding the magmatic behavior of S is challenging. Using CSE data for oceanic plateau basalts (OPB), which rarely degas S, we show that many OPB are sulfide-saturated. Differences in the timing of sulfide-saturation between individual OPB suites can be explained by pressure effects on sulfur solubility associated with ascent through over-thickened crust. Importantly, where S-degassing does occur, OPB have higher CSE contents than S-undegassed melts at similar stages of differentiation. This can be explained by resorption of earlier-formed sulfides, which might play an important role in enriching degassed melts in sulfide-compatible CSE and potentially contributes to anomalous enrichments of CSE in the crust.

4.
Science ; 337(6091): 212-5, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22628557

RESUMO

The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.


Assuntos
Carbono/análise , Marte , Meteoroides , Compostos Orgânicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Silicatos/química , Cristalização , Meio Ambiente Extraterreno , Oxirredução , Óxidos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...