Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Commun ; 13(1): 2011, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440136

RESUMO

Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes. Induction of BCKs is independent of ER binding and instead associated with chromatin reprogramming centered around a progesterone receptor-orchestrated insulated neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate that ESR1 mutant tumors gain basal features associated with increased immune activation, encouraging additional studies of immune therapeutic vulnerabilities.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Mutação
2.
Cancer Res ; 82(7): 1321-1339, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078818

RESUMO

Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. SIGNIFICANCE: Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Segunda Neoplasia Primária , Células Neoplásicas Circulantes , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Mutação
3.
Mol Cancer Ther ; 17(6): 1156-1166, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545334

RESUMO

Recent reports indicate that some cancer types are especially sensitive to transcription inhibition, suggesting that targeting the transcriptional machinery provides new approaches to cancer treatment. Cyclin-dependent kinase (CDK)7 is necessary for transcription, and acts by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (PolII) to enable transcription initiation. CDK7 additionally regulates the activities of a number of transcription factors, including estrogen receptor (ER)-α. Here we describe a new, orally bioavailable CDK7 inhibitor, ICEC0942. It selectively inhibits CDK7, with an IC50 of 40 nmol/L; IC50 values for CDK1, CDK2, CDK5, and CDK9 were 45-, 15-, 230-, and 30-fold higher. In vitro studies show that a wide range of cancer types are sensitive to CDK7 inhibition with GI50 values ranging between 0.2 and 0.3 µmol/L. In xenografts of both breast and colorectal cancers, the drug has substantial antitumor effects. In addition, combination therapy with tamoxifen showed complete growth arrest of ER-positive tumor xenografts. Our findings reveal that CDK7 inhibition provides a new approach, especially for ER-positive breast cancer and identify ICEC0942 as a prototype drug with potential utility as a single agent or in combination with hormone therapies for breast cancer. ICEC0942 may also be effective in other cancers that display characteristics of transcription factor addiction, such as acute leukaemia and small-cell lung cancer. Mol Cancer Ther; 17(6); 1156-66. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase Ativadora de Quinase Dependente de Ciclina
4.
Sci Rep ; 8(1): 5237, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29568076

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Nat Commun ; 8(1): 1865, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192207

RESUMO

Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio/genética , Linhagem Celular Tumoral , Estradiol/uso terapêutico , Feminino , Fulvestranto , Humanos , Células MCF-7 , Mutação , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico
6.
Sci Rep ; 7(1): 16115, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170437

RESUMO

Polo-like kinase-1 (PLK1) plays a major role in driving mitotic events, including centrosome disjunction and separation, and is frequently over-expressed in human cancers. PLK1 inhibition is a promising therapeutic strategy and works by arresting cells in mitosis due to monopolar spindles. The p53 tumour suppressor protein is a short-lived transcription factor that can inhibit the growth, or stimulate the death, of developing cancer cells. Curiously, although p53 normally acts in an anti-cancer capacity, it can offer significant protection against inhibitors of PLK1, but the events underpinning this effect are not known. Here, we show that functional p53 reduces the sensitivity to PLK1 inhibitors by permitting centrosome separation to occur, allowing cells to traverse mitosis and re-enter cycle with a normal complement of 2N chromosomes. Protection entails the activation of p53 through the DNA damage-response enzymes, ATM and ATR, and requires the phosphorylation of p53 at the key regulatory site, Ser15. These data highlight a previously unrecognised link between p53, PLK1 and centrosome separation that has therapeutic implications for the use of PLK1 inhibitors in the clinic.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Benzimidazóis/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Imunofluorescência , Inativação Gênica , Células HCT116 , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Mitose/fisiologia , Morfolinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Pirazinas/farmacologia , Pironas/farmacologia , Sulfonas/farmacologia , Tiofenos/farmacologia , Proteína Supressora de Tumor p53/genética , Quinase 1 Polo-Like
7.
Nucleic Acids Res ; 45(19): 11056-11069, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977491

RESUMO

Cancer genome sequencing has implicated the cytosine deaminase activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) genes as an important source of mutations in diverse cancers, with APOBEC3B (A3B) expression especially correlated with such cancer mutations. To better understand the processes directing A3B over-expression in cancer, and possible therapeutic avenues for targeting A3B, we have investigated the regulation of A3B gene expression. Here, we show that A3B expression is inversely related to p53 status in different cancer types and demonstrate that this is due to a direct and pivotal role for p53 in repressing A3B expression. This occurs through the induction of p21 (CDKN1A) and the recruitment of the repressive DREAM complex to the A3B gene promoter, such that loss of p53 through mutation, or human papilloma virus-mediated inhibition, prevents recruitment of the complex, thereby causing elevated A3B expression and cytosine deaminase activity in cancer cells. As p53 is frequently mutated in cancer, our findings provide a mechanism by which p53 loss can promote cancer mutagenesis.


Assuntos
Citidina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Menor/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citidina Desaminase/metabolismo , Células HCT116 , Humanos , Immunoblotting , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo
8.
Breast Cancer Res Treat ; 159(2): 215-27, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27514395

RESUMO

Differential prognostic roles of Androgen Receptor (AR) have been proposed in breast cancer (BC) depending on tumour oestrogen receptor (ER) status. This study aimed to evaluate the prognostic and/or predictive significance of AR expression in invasive BC. In this study AR expression was studied on a large (n = 1141) consecutive series of early-stage (I-III) BC using tissue microarray and immunohistochemistry (IHC). AR mRNA expression was assessed in a subset of cases. The prognostic impact of AR mRNA expression was externally validated using the online BC gene expression data sets (n = 25 data sets, 4078 patients). Nuclear AR IHC expression was significantly associated with features of good prognosis including older age, smaller tumour size, lower grade and lobular histology particularly in the ER-positive tumours. AR was associated with ER-related markers GATA3, FOXa1, RERG and BEX1. Negative association was observed with HER2, p53, Ki67, TK1, CD71 and AGTR1. AR Overexpression was associated with longer survival (p < 0.001), independent of tumour size, grade, stage [p = 0.033, hazard ratio (HR) = 0.80 95 % CI = 0.64-0.98]. Similar associations were maintained in ER+ tumours in univariate and multivariate analysis (p < 0.01) both in patients with and without adjuvant endocrine or chemotherapy. AR mRNA expression showed significant association with tumour grade, molecular subtypes, and longer 10 and 15 years survival in luminal BC. In the external validation cohorts, AR gene expression data were associated with improved patients' outcome (p < 0.001, HR = 0.84, 95 % CI 0.79-0.90). AR is not only an independent prognostic factor in ER-positive luminal BC but is also expressed in ER-negative tumours. AR could act as a molecular target in patients with ER-positive disease predicting response to adjuvant therapy.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Núcleo Celular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Gradação de Tumores , Prognóstico , Receptores de Estrogênio/metabolismo , Estudos Retrospectivos , Análise de Sobrevida , Análise Serial de Tecidos , Carga Tumoral
9.
Clin Cancer Res ; 22(23): 5929-5938, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27301701

RESUMO

PURPOSE: CDK-activating kinase (CAK) is required for the regulation of the cell cycle and is a trimeric complex consisting of cyclin-dependent kinase 7 (CDK7), Cyclin H, and the accessory protein, MAT1. CDK7 also plays a critical role in regulating transcription, primarily by phosphorylating RNA polymerase II, as well as transcription factors such as estrogen receptor-α (ER). Deregulation of cell cycle and transcriptional control are general features of tumor cells, highlighting the potential for the use of CDK7 inhibitors as novel cancer therapeutics. EXPERIMENTAL DESIGN: mRNA and protein expression of CDK7 and its essential cofactors cyclin H and MAT1 were evaluated in breast cancer samples to determine if their levels are altered in cancer. Immunohistochemical staining of >900 breast cancers was used to determine the association with clinicopathologic features and patient outcome. RESULTS: We show that expressions of CDK7, cyclin H, and MAT1 are all closely linked at the mRNA and protein level, and their expression is elevated in breast cancer compared with the normal breast tissue. Intriguingly, CDK7 expression was inversely proportional to tumor grade and size, and outcome analysis showed an association between CAK levels and better outcome. Moreover, CDK7 expression was positively associated with ER expression and in particular with phosphorylation of ER at serine 118, a site important for ER transcriptional activity. CONCLUSIONS: Expressions of components of the CAK complex, CDK7, MAT1, and Cyclin H are elevated in breast cancer and correlate with ER. Like ER, CDK7 expression is inversely proportional to poor prognostic factors and survival. Clin Cancer Res; 22(23); 5929-38. ©2016 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Ciclina H/genética , Quinases Ciclina-Dependentes/genética , Expressão Gênica/genética , Receptores de Estrogênio/genética , Adulto , Proteínas de Ciclo Celular , Feminino , Humanos , Pessoa de Meia-Idade , Fosforilação/genética , Prognóstico , Transdução de Sinais/genética , Fatores de Transcrição , Transcrição Gênica/genética , Quinase Ativadora de Quinase Dependente de Ciclina
10.
Nucleic Acids Res ; 44(2): 582-94, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26400164

RESUMO

Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.


Assuntos
Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/genética , Proteína Supressora de Tumor p53/genética , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Deleção de Genes , Células HCT116 , Células HT29 , Humanos , Mutação , Especificidade de Órgãos , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
11.
Cell Rep ; 13(1): 108-121, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26411678

RESUMO

Estrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.


Assuntos
Neoplasias da Mama/genética , Citidina Desaminase/genética , Citidina/metabolismo , Reparo do DNA por Junção de Extremidades , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Desaminação , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Antígenos de Histocompatibilidade Menor , Prognóstico , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Oncotarget ; 6(25): 21685-703, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26280373

RESUMO

The Nuclear Receptor (NR) superfamily of transcription factors comprises 48 members, several of which have been implicated in breast cancer. Most important is estrogen receptor-α (ERα), which is a key therapeutic target. ERα action is facilitated by co-operativity with other NR and there is evidence that ERα function may be recapitulated by other NRs in ERα-negative breast cancer. In order to examine the inter-relationships between nuclear receptors, and to obtain evidence for previously unsuspected roles for any NRs, we undertook quantitative RT-PCR and bioinformatics analysis to examine their expression in breast cancer. While most NRs were expressed, bioinformatic analyses differentiated tumours into distinct prognostic groups that were validated by analyzing public microarray data sets. Although ERα and progesterone receptor were dominant in distinguishing prognostic groups, other NR strengthened these groups. Clustering analysis identified several family members with potential importance in breast cancer. Specifically, RORγ is identified as being co-expressed with ERα, whilst several NRs are preferentially expressed in ERα-negative disease, with TLX expression being prognostic in this subtype. Functional studies demonstrated the importance of TLX in regulating growth and invasion in ERα-negative breast cancer cells.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Análise por Conglomerados , Biologia Computacional , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Nucleares Órfãos , Prognóstico
13.
Cell Rep ; 12(5): 837-49, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26212333

RESUMO

LMTK3 is an oncogenic receptor tyrosine kinase (RTK) implicated in various types of cancer, including breast, lung, gastric, and colorectal cancer. It is localized in different cellular compartments, but its nuclear function has not been investigated so far. We mapped LMTK3 binding across the genome using ChIP-seq and found that LMTK3 binding events are correlated with repressive chromatin markers. We further identified KRAB-associated protein 1 (KAP1) as a binding partner of LMTK3. The LMTK3/KAP1 interaction is stabilized by PP1α, which suppresses KAP1 phosphorylation specifically at LMTK3-associated chromatin regions, inducing chromatin condensation and resulting in transcriptional repression of LMTK3-bound tumor suppressor-like genes. Furthermore, LMTK3 functions at distal regions in tethering the chromatin to the nuclear periphery, resulting in H3K9me3 modification and gene silencing. In summary, we propose a model where a scaffolding function of nuclear LMTK3 promotes cancer progression through chromatin remodeling.


Assuntos
Neoplasias da Mama/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
14.
Breast Cancer Res Treat ; 150(3): 511-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25794775

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARγ) is an adopted orphan receptor that belongs to the nuclear receptor superfamily of transcription factors. PPARγ is regarded as a differentiation factor and it plays an important role in regulating adipogenesis, cell growth, proliferation and tumour progression. In breast cancer (BC), PPARγ agonists were reported to inhibit proliferation and growth invasion and promote phenotypic changes associated with a less malignant and more differentiated status. This study aims to assess the prognostic and biological roles of PPARγ protein expression in a large cohort of BC patients (n = 1100) with emphasis on the luminal oestrogen receptor (ER) positive class. Immunohistochemistry was used to assess the levels of PPARγ expression in BC series prepared as tissue microarrays (TMAs). PPARγ antibody specificity was confirmed using Western blotting. PPARγ nuclear expression was detected in 79 % of the cases and its expression was positively correlated with the hormonal receptors (ER, progesterone receptor and androgen receptor). PPARγ levels were significantly higher in tumours with lobular subtype, smaller size and lower grade, while HER2-positive, ductal or medullary tumours were associated with lower PPARγ levels. Survival analysis showed that PPARγ is associated with better outcome in the whole series as well as in luminal ER-positive class. Cox regression model showed that PPARγ is an independent predictor of outcome. Higher PPARγ was associated with longer survival in patients with ER-positive tumours who did not receive hormone therapy. PPARγ is a good prognostic marker associated with hormone receptors. In patients with luminal BCs, PPARγ is a marker of better prognosis and is associated with longer survival.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , PPAR gama/metabolismo , Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Receptores de Estrogênio/metabolismo , Análise de Sobrevida , Análise Serial de Tecidos
15.
Oncotarget ; 5(4): 959-69, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24659630

RESUMO

Prostate cancer growth is dependent upon the Androgen Receptor (AR) pathway, hence therapies for this disease often target this signalling axis. Such therapies are successful in the majority of patients but invariably fail after a median of 2 years and tumours progress to a castrate resistant stage (CRPC). Much evidence exists to suggest that the AR remains key to CRPC growth and hence remains a valid therapeutic target. Here we describe a novel method to inhibit AR activity, consisting of an interaction motif, that binds to the AR ligand-binding domain, fused to repression domains. These 'engineered repressors' are potent inhibitors of AR activity and prostate cancer cell growth and importantly inhibit the AR under circumstances in which conventional therapies would be predicted to fail, such as AR mutation and altered cofactor levels.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Repressoras/farmacologia , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Engenharia de Proteínas , Receptores Androgênicos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/genética , Transdução de Sinais
16.
Neurosci Lett ; 564: 89-93, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24525250

RESUMO

Sensitisation of the capsaicin receptor, transient receptor potential vanilloid type 1 (TRPV1) ion channel in nociceptive primary sensory neurons (PSN) underlies the development of inflammatory heat hyperalgesia. Removal of the negative-dominant splice variant of the TRPV1 molecule, TRPV1b from TRPV1/TRPV1b heterotetrameric channels, which should be associated with changes in the expression of TRPV1 and TRPV1b transcripts and proteins, has been suggested to contribute to that sensitisation. Respective reverse-transcriptase polymerase chain reaction (RT-PCR) and Western-blotting revealed that both TRPV1 and TRPV1b mRNA, and their encoded proteins are expressed in rat cultured PSN. Sequencing of the RT-PCR products showed that TRPV1b mRNA lacks the entire exon 7. Further, growing PSN for 2 days in the presence of 10µM bradykinin (BK) and 10µM prostaglandin E2 (PGE2) significantly increases TRPV1 responsiveness and TRPV1 mRNA expression, without producing any changes in TRPV1b mRNA, and TRPV1 and TRPV1b protein expression. These data challenge the hypothesis that alterations in the composition of the TRPV1 ion channel contributes to the sensitisation.


Assuntos
Bradicinina/farmacologia , Dinoprostona/farmacologia , Nociceptores/metabolismo , Canais de Cátion TRPV/biossíntese , Animais , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Nociceptores/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
17.
Pflugers Arch ; 466(7): 1421-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24114173

RESUMO

The endogenous lipid agent N-arachidonoylethanolamine (anandamide), among other effects, has been shown to be involved in nociceptive processing both in the central and peripheral nervous systems. Anandamide is thought to be synthesised by several enzymatic pathways both in a Ca(2+)-sensitive and Ca(2+)-insensitive manner, and rat primary sensory neurons produce anandamide. Here, we show for the first time, that cultured rat primary sensory neurons express at least four of the five known Ca(2+)-insensitive enzymes implicated in the synthesis of anandamide, and that application of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl, the common substrate of the anandamide-synthesising pathways, results in anandamide production which is not changed by the removal of extracellular Ca(2+). We also show that anandamide, which has been synthesised in primary sensory neurons following the application of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-arachidonoyl induces a transient receptor potential vanilloid type 1 ion channel-mediated excitatory effect that is not inhibited by concomitant activation of the cannabinoid type 1 receptor. Finally, we show that sub-populations of transient receptor potential vanilloid type 1 ion channel-expressing primary sensory neurons also express some of the putative Ca(2+)-insensitive anandamide-synthesising enzymes. Together, these findings indicate that anandamide synthesised by primary sensory neuron via a Ca(2+)-insensitive manner has an excitatory rather than an inhibitory role in primary sensory neurons and that excitation is mediated predominantly through autocrine signalling. Regulation of the activity of the Ca(2+)-insensitive anandamide-synthesising enzymes in these neurons may be capable of regulating the activity of these cells, with potential relevance to controlling nociceptive processing.


Assuntos
Potenciais de Ação , Ácidos Araquidônicos/metabolismo , Cálcio/metabolismo , Endocanabinoides/metabolismo , Fosfatidiletanolaminas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Ácidos Araquidônicos/biossíntese , Células Cultivadas , Endocanabinoides/biossíntese , Gânglios Espinais/citologia , Gânglios Espinais/enzimologia , Gânglios Espinais/metabolismo , Fosfolipases A2 do Grupo IB/genética , Fosfolipases A2 do Grupo IB/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidiletanolaminas/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/enzimologia , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
18.
Nucleic Acids Res ; 41(22): 10228-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049078

RESUMO

Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1-regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ERα binding sites. Analysis of select binding sites confirmed regulation of ERα-regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ERα recruitment, while LRH-1 knockdown reduced ERα recruitment to ERα binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ERα target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ERα at oestrogen response elements controls the expression of oestrogen-responsive genes.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Neoplasias da Mama/metabolismo , Células COS , Chlorocebus aethiops , Feminino , Células MCF-7 , Elementos de Resposta
19.
J Mol Endocrinol ; 51(3): 301-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23997240

RESUMO

The development and growth of prostate cancer is dependent on androgens; thus, the identification of androgen-regulated genes in prostate cancer cells is vital for defining the mechanisms of prostate cancer development and progression and developing new markers and targets for prostate cancer treatment. Glycine N-methyltransferase (GNMT) is a S-adenosylmethionine-dependent methyltransferase that has been recently identified as a novel androgen-regulated gene in prostate cancer cells. Although the importance of this protein in prostate cancer progression has been extensively addressed, little is known about the mechanism of its androgen regulation. Here, we show that GNMT expression is stimulated by androgen in androgen receptor (AR) expressing cells and that the stimulation occurs at the mRNA and protein levels. We have identified an androgen response element within the first exon of the GNMT gene and demonstrated that AR binds to this element in vitro and in vivo. Together, these studies identify GNMT as a direct transcriptional target of the AR. As this is an evolutionarily conserved regulatory element, this highlights androgen regulation as an important feature of GNMT regulation.


Assuntos
Androgênios/metabolismo , Glicina N-Metiltransferase/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Masculino , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/metabolismo
20.
ChemMedChem ; 7(11): 1909-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961990

RESUMO

Targeting LRH-1: Virtual screening and molecular modeling were used to identify novel antagonists of liver receptor homolog-1 (LRH-1), an emerging therapeutic target for breast cancer. Hit compounds were synthesized and biologically assayed, and the preliminary results suggest that raloxifene-based analogues, substituted at the position C-7 of the benzothiophene ring, might generate an inactive protein conformation through binding and thus antagonize this nuclear receptor.


Assuntos
Cloridrato de Raloxifeno/análogos & derivados , Cloridrato de Raloxifeno/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células COS , Chlorocebus aethiops , Desenho de Fármacos , Feminino , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...