Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 16(1): 73, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236114

RESUMO

BACKGROUND: Galectin-3 (Gal-3) is a promising target in cancer therapy with a high therapeutic potential due to its abundant localization within the tumor tissue and its involvement in tumor development and proliferation. Potential clinical application of Gal-3-targeted inhibitors is often complicated by their insufficient selectivity or low biocompatibility. Nanomaterials based on N-(2-hydroxypropyl)methacrylamide (HPMA) nanocarrier are attractive for in vivo application due to their good water solubility and lack of toxicity and immunogenicity. Their conjugation with tailored carbohydrate ligands can yield specific glyconanomaterials applicable for targeting biomedicinally relevant lectins like Gal-3. RESULTS: In the present study we describe the synthesis and the structure-affinity relationship study of novel Gal-3-targeted glyconanomaterials, based on hydrophilic HPMA nanocarriers. HPMA nanocarriers decorated with varying amounts of Gal-3 specific epitope GalNAcß1,4GlcNAc (LacdiNAc) were analyzed in a competitive ELISA-type assay and their binding kinetics was described by surface plasmon resonance. We showed the impact of various linker types and epitope distribution on the binding affinity to Gal-3. The synthesis of specific functionalized LacdiNAc epitopes was accomplished under the catalysis by mutant ß-N-acetylhexosaminidases. The glycans were conjugated to statistic HPMA copolymer precursors through diverse linkers in a defined pattern and density using Cu(I)-catalyzed azide-alkyne cycloaddition. The resulting water-soluble and structurally flexible synthetic glyconanomaterials exhibited affinity to Gal-3 in low µM range. CONCLUSIONS: The results of this study reveal the relation between the linker structure, glycan distribution and the affinity of the glycopolymer nanomaterial to Gal-3. They pave the way to specific biomedicinal glyconanomaterials that target Gal-3 as a therapeutic goal in cancerogenesis and other disorders.


Assuntos
Acrilamidas/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Galectina 3/metabolismo , Glicoconjugados/metabolismo , Acrilamidas/química , Proteínas Sanguíneas , Portadores de Fármacos/química , Galectinas , Glicoconjugados/química , Humanos , Nanoestruturas/química
2.
Micron ; 38(2): 170-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16962333

RESUMO

Oxygenic photosynthesis of higher plants requires linear electron transport that is driven by serially operating Photosystem II and Photosystem I reaction centers. It is widely accepted that distribution of these two types of reaction centers in the thylakoid membrane is heterogeneous. Here, we describe two optical microscopic techniques that can be combined to reveal the heterogeneity. By imaging micro-spectroscopy at liquid nitrogen temperature, we resolved the heterogeneity of the chloroplast thylakoid membrane by distinct spectral signatures of fluorescence emitted by the two photosystems. With another microscope, we measured changes in the fluorescence emission yield that are induced by actinic light at room temperature. Fluorescence yield of Photosystem II reaction centers varies strongly with light-induced changes of its photochemical yield. Consequently, application of moderate background irradiance induces changes in the Photosystem II fluorescence yield whereas no such modulation occurs in Photosystem I. This contrasting feature was used to identify regions in thylakoid membranes that are enriched in active Photosystem II.


Assuntos
Microscopia de Fluorescência/métodos , Complexo de Proteína do Fotossistema I/análise , Complexo de Proteína do Fotossistema II/análise , Espectrometria de Fluorescência/métodos , Tilacoides/química , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA