Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747710

RESUMO

Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1 to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.

2.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546753

RESUMO

Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (~1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE's data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date.

3.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36993282

RESUMO

We are now in the era of millimeter-scale electron microscopy (EM) volumes collected at nanometer resolution (Shapson-Coe et al., 2021; Consortium et al., 2021). Dense reconstruction of cellular compartments in these EM volumes has been enabled by recent advances in Machine Learning (ML) (Lee et al., 2017; Wu et al., 2021; Lu et al., 2021; Macrina et al., 2021). Automated segmentation methods can now yield exceptionally accurate reconstructions of cells, but despite this accuracy, laborious post-hoc proofreading is still required to generate large connectomes free of merge and split errors. The elaborate 3-D meshes of neurons produced by these segmentations contain detailed morphological information, from the diameter, shape, and branching patterns of axons and dendrites, down to the fine-scale structure of dendritic spines. However, extracting information about these features can require substantial effort to piece together existing tools into custom workflows. Building on existing open-source software for mesh manipulation, here we present "NEURD", a software package that decomposes each meshed neuron into a compact and extensively-annotated graph representation. With these feature-rich graphs, we implement workflows for state of the art automated post-hoc proofreading of merge errors, cell classification, spine detection, axon-dendritic proximities, and other features that can enable many downstream analyses of neural morphology and connectivity. NEURD can make these new massive and complex datasets more accessible to neuroscience researchers focused on a variety of scientific questions.

4.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36993398

RESUMO

To understand how the brain computes, it is important to unravel the relationship between circuit connectivity and function. Previous research has shown that excitatory neurons in layer 2/3 of the primary visual cortex of mice with similar response properties are more likely to form connections. However, technical challenges of combining synaptic connectivity and functional measurements have limited these studies to few, highly local connections. Utilizing the millimeter scale and nanometer resolution of the MICrONS dataset, we studied the connectivity-function relationship in excitatory neurons of the mouse visual cortex across interlaminar and interarea projections, assessing connection selectivity at the coarse axon trajectory and fine synaptic formation levels. A digital twin model of this mouse, that accurately predicted responses to arbitrary video stimuli, enabled a comprehensive characterization of the function of neurons. We found that neurons with highly correlated responses to natural videos tended to be connected with each other, not only within the same cortical area but also across multiple layers and visual areas, including feedforward and feedback connections, whereas we did not find that orientation preference predicted connectivity. The digital twin model separated each neuron's tuning into a feature component (what the neuron responds to) and a spatial component (where the neuron's receptive field is located). We show that the feature, but not the spatial component, predicted which neurons were connected at the fine synaptic scale. Together, our results demonstrate the "like-to-like" connectivity rule generalizes to multiple connection types, and the rich MICrONS dataset is suitable to further refine a mechanistic understanding of circuit structure and function.

5.
Proc Natl Acad Sci U S A ; 119(48): e2202580119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417438

RESUMO

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.


Assuntos
Neocórtex , Células Precursoras de Oligodendrócitos , Animais , Camundongos , Axônios/metabolismo , Oligodendroglia/metabolismo , Neurônios/metabolismo
6.
Elife ; 112022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382887

RESUMO

Learning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (layer 2/3 [L2/3] pyramidal cells in mouse primary visual cortex), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects (250 × 140 × 90 µm3 volume). We used the map to identify constraints on the learning algorithms employed by the cortex. Previous cortical studies modeled a continuum of synapse sizes by a log-normal distribution. A continuum is consistent with most neural network models of learning, in which synaptic strength is a continuously graded analog variable. Here, we show that synapse size, when restricted to synapses between L2/3 pyramidal cells, is well modeled by the sum of a binary variable and an analog variable drawn from a log-normal distribution. Two synapses sharing the same presynaptic and postsynaptic cells are known to be correlated in size. We show that the binary variables of the two synapses are highly correlated, while the analog variables are not. Binary variation could be the outcome of a Hebbian or other synaptic plasticity rule depending on activity signals that are relatively uniform across neuronal arbors, while analog variation may be dominated by other influences such as spontaneous dynamical fluctuations. We discuss the implications for the longstanding hypothesis that activity-dependent plasticity switches synapses between bistable states.


Assuntos
Células Piramidais , Sinapses , Camundongos , Animais , Células Piramidais/fisiologia , Sinapses/fisiologia , Plasticidade Neuronal/fisiologia , Microscopia Eletrônica
7.
Elife ; 112022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35880860

RESUMO

Serial-section electron microscopy (ssEM) is the method of choice for studying macroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so -called connectomes. The data that can comprise of up to 108 individual EM images must be assembled into a volume, requiring seamless 2D registration from physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render Trautman and Saalfeld (2019) services used in the volume assembly of the brain of adult Drosophila melanogaster (Zheng et al. 2018). It achieves high throughput by operating only on image meta-data and transformations. ASAP is modular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (Yin et al. 2020); Microns Consortium et al. (2021) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.


Assuntos
Algoritmos , Drosophila melanogaster , Animais , Encéfalo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Microscopia Eletrônica , Software
8.
Cell ; 185(6): 1082-1100.e24, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216674

RESUMO

We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 µm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.


Assuntos
Neocórtex , Animais , Camundongos , Microscopia Eletrônica , Neocórtex/fisiologia , Organelas , Células Piramidais/fisiologia , Sinapses/fisiologia
9.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851292

RESUMO

Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.


Assuntos
Células Piramidais/ultraestrutura , Sinapses/ultraestrutura , Córtex Visual/ultraestrutura , Animais , Feminino , Masculino , Camundongos , Microscopia Eletrônica de Transmissão
10.
Nat Commun ; 11(1): 4949, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009388

RESUMO

Electron microscopy (EM) is widely used for studying cellular structure and network connectivity in the brain. We have built a parallel imaging pipeline using transmission electron microscopes that scales this technology, implements 24/7 continuous autonomous imaging, and enables the acquisition of petascale datasets. The suitability of this architecture for large-scale imaging was demonstrated by acquiring a volume of more than 1 mm3 of mouse neocortex, spanning four different visual areas at synaptic resolution, in less than 6 months. Over 26,500 ultrathin tissue sections from the same block were imaged, yielding a dataset of more than 2 petabytes. The combined burst acquisition rate of the pipeline is 3 Gpixel per sec and the net rate is 600 Mpixel per sec with six microscopes running in parallel. This work demonstrates the feasibility of acquiring EM datasets at the scale of cortical microcircuits in multiple brain regions and species.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Animais , Automação , Camundongos , Neocórtex/diagnóstico por imagem , Software
11.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32094293

RESUMO

Serial section electron microscopy (ssEM), a technique where volumes of tissue can be anatomically reconstructed by imaging consecutive tissue slices, has proven to be a powerful tool for the investigation of brain anatomy. Between the process of cutting the slices, or "sections," and imaging them, however, handling 10°-106 delicate sections remains a bottleneck in ssEM, especially for batches in the "mesoscale" regime, i.e., 102-103 sections. We present a tissue section handling device that transports and positions sections, accurately and repeatability, for automated, robotic section pick-up and placement onto an imaging substrate. The device interfaces with a conventional ultramicrotomy diamond knife, accomplishing in-line, exact-constraint trapping of sections with 100-µm repeatability. An associated mathematical model includes capillary-based and Stokes-based forces, accurately describing observed behavior and fundamentally extends the modeling of water-air interface forces. Using the device, we demonstrate and describe the limits of reliable handling of hundreds of slices onto a variety of electron and light microscopy substrates without significant defects (n = 8 datasets composed of 126 serial sections in an automated fashion with an average loss rate and throughput of 0.50% and 63 s/section, respectively. In total, this work represents an automated mesoscale serial sectioning system for scalable 3D-EM connectomics.


Assuntos
Conectoma , Encéfalo , Microscopia Eletrônica , Microtomia
12.
Elife ; 82019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31526477

RESUMO

The nematodes C. elegans and P. pacificus populate diverse habitats and display distinct patterns of behavior. To understand how their nervous systems have diverged, we undertook a detailed examination of the neuroanatomy of the chemosensory system of P. pacificus. Using independent features such as cell body position, axon projections and lipophilic dye uptake, we have assigned homologies between the amphid neurons, their first-layer interneurons, and several internal receptor neurons of P. pacificus and C. elegans. We found that neuronal number and soma position are highly conserved. However, the morphological elaborations of several amphid cilia are different between them, most notably in the absence of 'winged' cilia morphology in P. pacificus. We established a synaptic wiring diagram of amphid sensory neurons and amphid interneurons in P. pacificus and found striking patterns of conservation and divergence in connectivity relative to C. elegans, but very little changes in relative neighborhood of neuronal processes. These findings demonstrate the existence of several constraints in patterning the nervous system and suggest that major substrates for evolutionary novelty lie in the alterations of dendritic structures and synaptic connectivity.


Assuntos
Interneurônios/citologia , Rede Nervosa/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Rabditídios/anatomia & histologia , Células Receptoras Sensoriais/citologia , Animais
13.
PLoS One ; 13(10): e0206172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352088

RESUMO

Serial section transmission electron microscopy (ssTEM) is the most promising tool for investigating the three-dimensional anatomy of the brain with nanometer resolution. Yet as the field progresses to larger volumes of brain tissue, new methods for high-yield, low-cost, and high-throughput serial sectioning are required. Here, we introduce LASSO (Loop-based Automated Serial Sectioning Operation), in which serial sections are processed in "batches." Batches are quantized groups of individual sections that, in LASSO, are cut with a diamond knife, picked up from an attached waterboat, and placed onto microfabricated TEM substrates using rapid, accurate, and repeatable robotic tools. Additionally, we introduce mathematical models for ssTEM with respect to yield, throughput, and cost to access ssTEM scalability. To validate the method experimentally, we processed 729 serial sections of human brain tissue (~40 nm x 1 mm x 1 mm). Section yield was 727/729 (99.7%). Sections were placed accurately and repeatably (x-direction: -20 ± 110 µm (1 s.d.), y-direction: 60 ± 150 µm (1 s.d.)) with a mean cycle time of 43 s ± 12 s (1 s.d.). High-magnification (2.5 nm/px) TEM imaging was conducted to measure the image quality. We report no significant distortion, information loss, or substrate-derived artifacts in the TEM images. Quantitatively, the edge spread function across vesicle edges and image contrast were comparable, suggesting that LASSO does not negatively affect image quality. In total, LASSO compares favorably with traditional serial sectioning methods with respect to throughput, yield, and cost for large-scale experiments, and represents a flexible, scalable, and accessible technology platform to enable the next generation of neuroanatomical studies.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Transmissão/métodos , Neuroanatomia/métodos , Encéfalo/anatomia & histologia , Encéfalo/ultraestrutura , Humanos , Reprodutibilidade dos Testes
14.
J Colloid Interface Sci ; 531: 352-359, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30041112

RESUMO

HYPOTHESIS: The manipulation of nanosheets on a fluid-fluid interface remains a significant challenge. At this interface, hydrodynamic forces can be used for long-range transport (>1× capillary length) but are difficult to utilize for accurate and repeatable positioning. While capillary multipole interactions have been used for particle trapping, how these interactions manifest on large but thin objects, i.e., nanosheets, remains an open question. Hence, we posit hydrodynamic forces in conjunction with capillary multipole interactions can be used for nanosheet transport and trapping. EXPERIMENTS: We designed and characterized a fluidic device for transporting and trapping nanosheets on the water-air interface. Analytical models were compared against optical measurements of the nanosheet behavior to investigate capillary multipole interactions. Energy-based modeling and dimensional analysis were used to study trapping stability. FINDINGS: Hydrodynamic forces and capillary interactions successfully transported and trapped nanosheets at a designated trapping location with a repeatability of 10% of the nanosheet's length and 12% of its width (length = 1500 µm, width = 1000 µm) and an accuracy of 20% of their length and width. Additionally, this is the first report that surface tension forces acting upon nanoscale-thick objects manifest as capillary quadrupolar interactions and can be used for precision manipulation of nanosheets.

15.
Cell ; 152(1-2): 109-19, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332749

RESUMO

The relationship between neural circuit function and patterns of synaptic connectivity is poorly understood, in part due to a lack of comparative data for larger complete systems. We compare system-wide maps of synaptic connectivity generated from serial transmission electron microscopy for the pharyngeal nervous systems of two nematodes with divergent feeding behavior: the microbivore Caenorhabditis elegans and the predatory nematode Pristionchus pacificus. We uncover a massive rewiring in a complex system of identified neurons, all of which are homologous based on neurite anatomy and cell body position. Comparative graph theoretical analysis reveals a striking pattern of neuronal wiring with increased connectional complexity in the anterior pharynx correlating with tooth-like denticles, a morphological feature in the mouth of P. pacificus. We apply focused centrality methods to identify neurons I1 and I2 as candidates for regulating predatory feeding and predict substantial divergence in the function of pharyngeal glands.


Assuntos
Caenorhabditis elegans/fisiologia , Nematoides/fisiologia , Neurônios/fisiologia , Faringe/inervação , Animais , Caenorhabditis elegans/anatomia & histologia , Comportamento Alimentar , Interneurônios/citologia , Interneurônios/fisiologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Nematoides/anatomia & histologia , Rede Nervosa , Faringe/fisiologia , Comportamento Predatório , Sinapses/fisiologia
16.
Methods Cell Biol ; 111: 203-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22857930

RESUMO

Correlative light and electron microscopy (CLEM) is used when one needs to combine both imaging modalities on the same sample. When working on living small model organisms, such as Caenorhabditis elegans, specific CLEM protocols are required to acquire high-resolution light microscopic images of a region of interest and thereafter to relocate and study the same object at the ultrastructural level using a transmission electron microscope. In this chapter, we describe how to process living specimens from the confocal microscope to the transmission electron microscopy (TEM), focusing on an improved ultramicrotomy technique that allows a precise and reliable targeting of the object of interest. This improvement significantly reduces the time consuming and frequently frustrating search for the region of interest. Our targeted ultramicrotomy protocol is versatile enough to be applied on a variety of bulk specimens, such as fly and fish embryos, or mouse tissues.


Assuntos
Caenorhabditis elegans/ultraestrutura , Crioultramicrotomia , Animais , Microscopia Crioeletrônica , Criopreservação , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Inclusão em Plástico , Sefarose/química
17.
Wiley Interdiscip Rev Dev Biol ; 1(3): 389-400, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23801489

RESUMO

The free-living nematode Caenorhabditis elegans is one of the most important model organisms in all areas of modern biology. Using the knowledge about C. elegans as a baseline, nematodes are now intensively studied in evolution and development. Evolutionary developmental biology or for short, 'evo-devo' has been developed as a new research discipline during the last two decades to investigate how changes in developmental processes and mechanisms result in the modification of morphological structures and phenotypic novelty. In this article, we review the concepts that make nematode evo-devo a successful approach to evolutionary biology. We introduce selected model systems for nematode evo-devo and provide a detailed discussion of four selected case studies. The most striking finding of nematode evo-devo is the magnitude of developmental variation in the context of a conserved body plan. Detailed investigation of early embryogenesis, gonad formation, vulva development, and sex determination revealed that molecular mechanisms evolve rapidly, often in the context of a conserved body plan. These studies highlight the importance of developmental systems drift and neutrality in evolution.


Assuntos
Evolução Biológica , Desenvolvimento Embrionário , Modelos Animais , Nematoides/embriologia , Animais , Gônadas/embriologia
18.
J Comp Neurol ; 512(2): 271-81, 2009 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-19003904

RESUMO

Amphid sensilla are the primary olfactory, chemoreceptive, and thermoreceptive organs in nematodes. Their function is well described for the model organism Caenorhabditis elegans, but it is not clear to what extent we can generalize these findings to distantly related nematodes of medical, economic, and agricultural importance. Current detailed descriptions of anatomy and sensory function are limited to nematodes that recent molecular phylogenies would place in the same taxonomic family, the Rhabditidae. Using serial thin-section transmission electron microscopy, we reconstructed the anatomy of the amphid sensilla in the more distantly related nematode, Acrobeles complexus (Cephalobidae). Amphid structure is broadly conserved in number and arrangement of cells. Details of cell anatomy differ, particularly for the sensory neurite termini. We identify an additional sensory neuron not found in the amphid of C. elegans and propose homology with the C. elegans interneuron AUA. Hypotheses of homology for the remaining sensory neurons are also proposed based on comparisons between C. elegans, Strongyloides stercoralis, and Haemonchus contortus.


Assuntos
Modelos Anatômicos , Nematoides/anatomia & histologia , Anatomia Comparada , Animais , Filogenia , Células Receptoras Sensoriais/ultraestrutura
19.
J Morphol ; 268(8): 649-63, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17514723

RESUMO

Nematode sensory structures can be divided into two classes; cuticular sensillae, with dendrites ending outside the epidermis, and internal receptors, that typically are single dendrites terminating within the body cavity. Fine structure of the former has been described completely in more than a dozen nematode taxa, while the latter were previously only well understood in the microbial feeder Caenorhabditis elegans. The distantly related nematode Acrobeles complexus has a similar ecology and together the two span a clade representing a large proportion of nematode biodiversity. The cuticular sensillae and internal receptors of A. complexus are here shown to be remarkably similar in number, arrangement, and morphology to those of C. elegans. Several key differences are reported that likely relate to function, and suggest that this nematode has a cuticular sensillum morphology that is closer to that of the common ancestor of the two taxa. Internal sensory receptors have more elaborate termini than those of C. elegans. The existence of a novel form of mechanoreceptor in A. complexus and spatial relationships between sensillum dendrites suggest differences between two classes of sensillae in how a touch-response behavior may be mediated.


Assuntos
Caenorhabditis elegans/ultraestrutura , Nariz/anatomia & histologia , Nariz/inervação , Rabditídios/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/citologia , Microscopia Eletrônica de Transmissão , Modelos Anatômicos , Nariz/ultraestrutura , Filogenia , Rabditídios/anatomia & histologia , Rabditídios/citologia
20.
J Morphol ; 267(11): 1257-72, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16710857

RESUMO

The epidermis of the anterior end (nose) plays an important role in the evolution, development, and functional feeding morphology in nematodes, but information on this complex organ system is limited. Here, we produce a 3D model of 13 of the cells making up this organ system reconstructed from serial transmission electron micrographs of the microbial feeding nematode, Acrobeles complexus. Nose epidermal cells were found to be broadly similar to those of the distantly related model organism Caenorhabditis elegans in the number and arrangement of nuclei in these largely syncytial cells; this similarity demonstrates striking evolutionary conservation that allows for robust statements of homology between the taxa. Examining details of cell shape, however, revealed surprisingly complex subcellular specialization, which differed markedly from C. elegans in the number and arrangement of cell processes. Anterior toroid processes of the anterior arcade, posterior arcade, and HypB syncytia form a nested complex at the base of the labial probolae. Anterior toroid processes of HypC and the inner labial socket cells are associated with the base of the cephalic probolae and radial ridge processes. Extracellular filaments (tendon organs) and radiating cytoskeletal filaments of the posterior arcade syncytium form a connection between the body wall muscle cells and the pharynx. An epidermal cell with no known homolog in other nematodes is identified. Findings provide a basis to propose hypotheses related to the development and evolutionary origin of specialized feeding appendages (probolae) in the Cephalobinae (including Acrobeles), and hypotheses of homology are revised for epidermal cells in the nose of the closely related and primarily plant parasitic group, Tylenchida.


Assuntos
Células Epiteliais/ultraestrutura , Nematoides/citologia , Nematoides/ultraestrutura , Anatomia Comparada/métodos , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Modelos Anatômicos , Nematoides/anatomia & histologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...