Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373561

RESUMO

Active packaging relies on controlled release of antimicrobials for food protection; however, uncontrolled migration due to environmental factors poses safety and functionality challenges. This study investigated the stability of zinc oxide nanoparticle (ZnONP) in poly(butylene-adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) biopolymer film for active food packaging applications. While incorporating ZnONP significantly enhanced the properties and active functionalities (UV-light blocking, antimicrobial activity) of PBAT/TPS film, food simulants posed significant stability challenges. Notably, exposure to 3 % acetic acid (acidic food simulant) triggered complete detachment and dissolution of ZnONPs from the film surface, leading to pore formation and subsequent internal ZnO dissolution. This resulted in dramatic alterations to the bionanocomposite films, including increased opacity, water vapor permeability, and decreased thermal stability, mechanical properties, and active functionalities. In contrast, 10 % ethanol (aqueous food simulant) had minimal impact, suggesting higher ZnO stability in neutral environments. Importantly, ZnO migration analysis revealed thresholds for safe application: 1 % ZnONP for acidic food contact and up to 5 % for aqueous foodstuffs. These findings highlight the critical role of environmental factors in ZnONP stability and emphasize the need for strategic optimization of ZnO content for achieving both functionality and safety in active biopolymer packaging.


Assuntos
Ácidos Ftálicos , Polienos , Óxido de Zinco , Amido , Poliésteres , Adipatos
2.
Polymers (Basel) ; 14(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36501690

RESUMO

Biodegradable polyesters polybutylene succinate (PBS) and polybutylene adipate-co-terephthalate (PBAT) were blended with gallic acid (GA) via cast extrusion to produce oxygen scavenging polymers. The effects of polyesters and GA contents (5 to 15%) on polymer/package properties were investigated. Increasing GA formed non-homogeneous microstructures and surface roughness due to immiscibility. GA had favorable interaction with PBAT than PBS, giving more homogeneous microstructures, reduced mechanical relaxation temperature, and modified X-ray diffraction and crystalline morphology of PBAT polymers. Non-homogenous dispersion of GA reduced mechanical properties and increased water vapor and oxygen permeability by two and seven folds, respectively. Increasing amounts of GA and higher humidity enhanced oxygen absorption capacity, which also depended on the dispersion characteristics of GA in the matrices. PBAT gave higher oxygen absorption than PBS due to better dispersion and higher reactive surface area. GA blended with PBAT and PBS increased oxygen scavenging activity as sustainable active food packaging using functional biodegradable polymers.

3.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559709

RESUMO

Maltol is widely used as a flavor enhancer in baked goods and has an antimicrobial function. Maltol can also be incorporated into biopolymer films to produce active biodegradable packaging for bakery products. This research investigated the incorporation of 1-10% maltol into acetylated cassava starch films as functional packaging for shelf-life extension of butter cake. Films were determined for morphology, chemical interaction and packaging properties. Infrared absorption indicated H-bonding between starch and maltol, while plasticization effects decreased mechanical relaxation temperature. Microstructures showed enhanced smoothness at up to 3% maltol, while maltol crystallization occurred at higher concentrations, giving non-homogeneous matrices. Tensile strength and elongation at break reduced by 37% and 34%, respectively, with the addition of maltol up to 10%. Maltol concentration modified the hydrophilicity and molecular mobility of the matrices, impacting water vapor and oxygen permeability. Films incorporated with maltol were used as packaging for preservative-free butter cake and delayed visible mold growth at room temperature. Starch films with maltol at 1-5% delayed fungal growth by up to 2.7-times, while films containing 10% maltol inhibited mold growth by 6-times (up to 19 days of storage). Incorporating maltol into starch films produced bioactive materials, extending shelf-life while maintaining the aroma of bakery products.

4.
Polymers (Basel) ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145850

RESUMO

Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.

5.
Food Chem ; 369: 130956, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479016

RESUMO

Biodegradable active packaging was produced by compounding nisin (3, 6 and 9%) and nisin-ethylenediaminetetraacetic acid (EDTA) (3 and 6%) mixtures with poly(butylene adipate terephthalate) and thermoplastic starch blends (PBAT/TPS) by blown-film extrusion. Nisin and EDTA interacted with polymers, involving CO stretching of ester bonds and increased compatibility. This plasticized the films and modified the crystallinity, surface roughness and thermal relaxation behavior. Barrier properties were improved due to modified hydrophilic-hydrophobic properties, compact structures and crystallites that restricted vapor and oxygen permeation. PBAT/TPS films containing EDTA and nisin effectively inhibited lipid degradation in pork tissues corresponding with stabilizing the CO ester bond of triacylglycerol. Microbial growth was also inhibited, particularly in EDTA-containing films up to 1.4 log. Inactivation of microorganisms stabilized redness and delayed meat discoloration, preserving the quality of packaged pork. Interaction between nisin, EDTA and polymers modified the morphology and film properties and functionalized biodegradable food packaging to inactivate microorganisms.


Assuntos
Nisina , Carne de Porco , Ácido Edético , Poliésteres , Amido
6.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616360

RESUMO

The effect of repeated contact with food simulants on the properties and functionality of zinc oxide (ZnO) in nanocomposite films was investigated to examine possible safety hazards from the point of view of long-term use as food packaging. Low-density polyethylene (LDPE) embedded with 5 wt% nano-ZnO was immersed in distilled water, 50% ethanol, 4% acetic acid, and n-heptane. The cycle of immersion-rinse-dry was repeated up to 40 times for same sample under constant condition. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), field emission-scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy analyses were performed to identify the changes in the chemical and functional properties of the nanocomposite film. Acetic acid had the greatest impact on the LDPE-ZnO nanocomposite films, while other food simulants caused little change. A new carboxylate bond was formed by the reaction of ZnO with acetic acid, as evidenced by the FTIR spectra. In addition, XRD and XAS confirmed the phase changes of nano-ZnO into zinc salts such as zinc hydroxy acetate or zinc acetate dihydrate. Furthermore, the light barrier property of the nanocomposite film drastically decreased, owing to the change in the bandgap of ZnO and film morphology.

7.
Front Nutr ; 8: 778310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926553

RESUMO

The present study focused on a facile and green approach for the one-step synthesis of silver nanoparticles (AgNPs) embedded in hard wood bleached kraft fiber. The hydroxyl groups on the cellulose chain induced ionic silver reduction with additional hydrothermal energy, allowing for the in situ formation and deposition of AgNPs on the cellulose fiber. The white color of the bleached fiber transformed to yellow due to the formation of AgNPs. UV-Vis spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the AgNPs were uniformly distributed across the surface of the obtained cellulose fibers. The results indicated that the formation and distribution of AgNPs on surface of cellulose fibers was significantly influenced by the amount and concentration of silver nitrate (AgNO3). The antimicrobial activity of the cellulose-AgNP composite sheet against Escherichia coli was found to be inhibiting. These findings imply that cellulose-AgNP composite sheets can be feasibly used as antimicrobial paper for food packaging.

8.
Int J Biol Macromol ; 140: 91-97, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400423

RESUMO

Herein, an optical colorimetric sensor based on photonic cellulose nanocrystals (CNCs) was successfully developed to offer a convenient approach for measuring the qualitative index of high humidity (>85% RH). The addition of monovalent electrolyte (0.11 wt% NaCl) to CNC suspension before gelation enabled CNC film to bear consistent pinkish color, which is far better to readily reflect the visible color appeared as the pitch increases by water uptake. Further study of virtual reality simulation revealed that the increase of ambient humidity alters the color of photonic CNC film to be sufficiently observable either by optical instruments or human eyes. Under polarized optical microscope, CNC films appeared initially green and gradually turned to red color that is in agreement with red shift in UV-Vis absorption spectrum. Whereas, the reflected color change from pinkish to bluish was well-recognized by human eyes indicating photonic CNC is capable of being an effective colorimetric indicator. In a variable circumstance of low and high humidity, consecutive cycle test showed that the as-prepared indicator fully recovered to the original color in 30 min with 99.8% colorimetric response value. This film can be potentially used for an accurate and reversible humidity optical indicator in intelligent packaging for products that undergo deterioration along with high moisture, e.g., pharmaceutical products, cereals and grain seeds, and electronic parts, to monitor the quality during export or storage.


Assuntos
Celulose/química , Umidade , Membranas Artificiais , Nanopartículas/química , Indicadores e Reagentes
9.
Int J Biol Macromol ; 107(Pt B): 1782-1791, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29030188

RESUMO

Gold nanoparticles (AuNPs) were directly synthesized and anchored on lignocellulose fiber without an external immobilizing agent via a facile green approach using unbleached kraft (UBK) softwood pulp. The obtained AuNPs were confirmed by UV-vis diffuse reflectance spectroscopy, field-emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The antioxidant behavior of the as-prepared AuNP-UBK fiber nanocomposite was evaluated by free radical scavenging of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH). The nanocomposite fiber exhibited greatly enhanced radical scavenging activity compared to that of the pure fiber. As a consequence, AuNP-UBK nanocomposite paper showed exceptional antioxidant performance with a radical scavenging rate of over 98%, which is attributed to the synergistic effects of adsorption by the fiber-fiber network and subsequent catalytic activity of the AuNPs. This research indicated that AuNP-UBK fiber nanocomposites could be a new candidate for antioxidant active packaging for use in food preservation.


Assuntos
Antioxidantes/farmacologia , Ouro/química , Química Verde/métodos , Lignina/química , Nanopartículas Metálicas/química , Nanocompostos/química , Papel , Embalagem de Produtos , Catálise , Sequestradores de Radicais Livres/química , Umidade , Nanocompostos/ultraestrutura , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
J Nanosci Nanotechnol ; 15(9): 6357-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716190

RESUMO

Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.


Assuntos
Embalagem de Alimentos , Inocuidade dos Alimentos , Nanoestruturas , Nanotecnologia
11.
J Food Sci ; 80(5): R910-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25881665

RESUMO

Recently, food packages produced with nanoparticles, "nano-food packaging," have become more available in the current market. However, although the use of nanomaterials is increasing in food packaging applications, concern over toxicity affects consumer perceptions and acceptance. Quite a number of commercialized forms of nano-food packaging are coated or composited product with inorganic materials, for example, nanosilver and nanoclay as representative examples. Several studies have shown the possibility of nanomaterial migration from packaging or containers to foodstuff. The debate is still ongoing among researchers about the extent of migration and whether it is negligible and safe. Government agencies and stakeholders must hurry to determine use limitations and release conclusive legislation and regulations as soon as possible since nano-food packaging may have great impacts on human health. This paper aims to review the availability of nano-food packaging in the current market, report case studies on nanomaterial migration, and present the current status of safety regulations and management of nano-food packaging in leading countries across regions. This review should enable governments and researchers to develop further nanomaterial risk assessment studies.


Assuntos
Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Embalagem de Alimentos/métodos , Saúde , Legislação sobre Alimentos , Nanoestruturas/análise , Segurança , Embalagem de Alimentos/legislação & jurisprudência , Humanos , Nanopartículas , Nanoestruturas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...