Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37891949

RESUMO

Oxidative stress contributes to impairment of skin health, the wound healing process, and pathologies such as psoriasis or skin cancer. Five Polynesian medicinal plants, among the most traditionally used for skin care (pimples, wounds, burns, dermatoses) are studied herein for their antioxidant properties: Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, and Ficus prolixa. Plant extracts were submitted to in vitro bioassays related to antioxidant properties and their bioactive constituents were identified by a metabolomic analytical approach. High performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) analysis was performed leading to the characterization of 61 metabolites. Compounds annotated for F. prolixa and C. subcordata extracts were reported for the first time. Antioxidant properties were evaluated by total phenolic content (TPC), free radical scavenging DPPH (1,1-diphenyl-2-picryl-hydrazyl), and Ferric Reducing Antioxidant Power activity (FRAP) assays. F. prolixa extract was the most active one and showed antioxidant intracellular activity on keratinocytes by Anti Oxydant Power 1 assay. Online HPLC-DPPH allowed the identification of phenolic bioactive compounds such as quercetin-O-rhamnoside, rosmarinic acid, chlorogenic acid, procyanidins, epicatechin, 5-O-caffeoylshikimic acid, and curcumin as being responsible for the scavenging properties of these plant extracts. These results highlight the potential of F. prolixa aerial roots as a source of antioxidants for skin care applications.

2.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670912

RESUMO

Aloe plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the Aloe genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five Aloe species: Aloe macra, Aloe vera, Aloe tormentorii, Aloe ferox, and Aloe purpurea. Aloe macra, A. tormentorii, and A. purpurea are endemic from the Mascarene Islands comprising Reunion, Mauritius, and Rodrigues. UHPLC-MS/MS analysis followed by a dereplication process allowed the characterization of 93 metabolites. The newly developed MolNotator algorithm was usedfor molecular networking and allowed a better exploration of the Aloe metabolome chemodiversity. The five species appeared rich in polyphenols (anthracene derivatives, flavonoids, phenolic acids). Therefore, the total phenolic content and antioxidant activity of the five species were evaluated, and a DPPH-On-Line-HPLC assay was used to determine the metabolites responsible for the radical scavenging activity. The use of computational tools allowed a better description of the comparative phytochemical profiling of five Aloe species, which showed differences in their metabolite composition, both qualitative and quantitative. Moreover, the molecular network approach combined with the On-Line-HPLC assay allowed the identification of 9 metabolites responsible for the antioxidant activity. Two of them, aloeresin A and coumaroylaloesin, could be the principal metabolites responsible for the activity. From 374 metabolites calculated by MolNator, 93 could be characterized. Therefore, the Aloe species can be a rich source of new chemical structures that need to be discovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...