Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Total Environ ; 934: 173312, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761938

RESUMO

Few studies have explored the influence of socioeconomic status (SES) on the heat vulnerability of mental health (MH) patients. As individual socioeconomic data was unavailable, we aimed to fill this gap by using the healthcare system type as a proxy for SES. Brazilian national statistics indicate that public patients have lower SES than private. Therefore, we compared the risk of emergency department visits (EDVs) for MH between patients from both healthcare types. EDVs for MH disorders from all nine public (101,452 visits) and one large private facility (154,954) in Curitiba were assessed (2017-2021). Daily mean temperature was gathered and weighed from 3 stations. Distributed-lag non-linear model with quasi-Poisson (maximum 10-lags) was used to assess the risk. We stratified by private and public, age, and gender under moderate and extreme heat. Additionally, we calculated the attributable fraction (AF), which translates individual risks into population-representative burdens - especially useful for public policies. Random-effects meta-regression pooled the risk estimates between healthcare systems. Public patients showed significant risks immediately as temperatures started to increase. Their cumulative relative risk (RR) of MH-EDV was 7.5 % higher than the private patients (Q-Test 26.2 %) under moderate heat, suggesting their particular heat vulnerability. Differently, private patients showed significant risks only under extreme heat, when their RR became 4.3 % higher than public (Q-Test 6.2 %). These findings suggest that private patients have a relatively greater adaptation capacity to heat. However, when faced with extreme heat, their current adaptation means were potentially insufficient, so they needed and could access healthcare freely, unlike their public counterparts. MH patients would benefit from measures to reduce heat vulnerability and access barriers, increasing equity between the healthcare systems in Brazil. AF of EDVs due to extreme heat was 0.33 % (95%CI 0.16;0.50) for the total sample (859 EDVs). This corroborates that such broad population-level policies are urgently needed as climate change progresses.

2.
Trials ; 25(1): 59, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229177

RESUMO

BACKGROUND: High ambient air temperatures in Africa pose significant health and behavioral challenges in populations with limited access to cooling adaptations. The built environment can exacerbate heat exposure, making passive home cooling adaptations a potential method for protecting occupants against indoor heat exposure. METHODS: We are conducting a 2-year community-based stratified cluster randomized controlled trial (cRCT) implementing sunlight-reflecting roof coatings, known as "cool roofs," as a climate change adaptation intervention for passive indoor home cooling. Our primary research objective is to investigate the effects of cool roofs on health, indoor climate, economic, and behavioral outcomes in rural Burkina Faso. This cRCT is nested in the Nouna Health and Demographic Surveillance System (HDSS), a population-based dynamic cohort study of all people living in a geographically contiguous area covering 59 villages, 14305 households and 28610 individuals. We recruited 1200 participants, one woman and one man, each in 600 households in 25 villages in the Nouna HDSS. We stratified our sample by (i) village and (ii) two prevalent roof types in this area of Burkina Faso: mud brick and tin. We randomized the same number of people (12) and homes (6) in each stratum 1:1 to receiving vs. not receiving the cool roof. We are collecting outcome data on one primary endpoint - heart rate, (a measure of heat stress) and 22 secondary outcomes encompassing indoor climate parameters, blood pressure, body temperature, heat-related outcomes, blood glucose, sleep, cognition, mental health, health facility utilization, economic and productivity outcomes, mosquito count, life satisfaction, gender-based violence, and food consumption. We followed all participants for 2 years, conducting monthly home visits to collect objective and subjective outcomes. Approximately 12% of participants (n = 152) used smartwatches to continuously measure endpoints including heart rate, sleep and activity. DISCUSSION: Our study demonstrates the potential of large-scale cRCTs to evaluate novel climate change adaptation interventions and provide evidence supporting investments in heat resilience in sub-Saharan Africa. By conducting this research, we will contribute to better policies and interventions to help climate-vulnerable populations ward off the detrimental effects of extreme indoor heat on health. TRIAL REGISTRATION: German Clinical Trials Register (DRKS) DRKS00023207. Registered on April 19, 2021.


Assuntos
Temperatura Baixa , Saúde Ambiental , Feminino , Humanos , Masculino , Burkina Faso/epidemiologia , Estudos de Coortes , Ensaios Clínicos Controlados Aleatórios como Assunto , Habitação
3.
BMJ Open ; 13(12): e079049, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135317

RESUMO

OBJECTIVES: Quantify the risk of mental health (MH)-related emergency department visits (EDVs) due to heat, in the city of Curitiba, Brazil. DESIGN: Daily time series analysis, using quasi-Poisson combined with distributed lag non-linear model on EDV for MH disorders, from 2017 to 2021. SETTING: All nine emergency centres from the public health system, in Curitiba. PARTICIPANTS: 101 452 EDVs for MH disorders and suicide attempts over 5 years, from patients residing inside the territory of Curitiba. MAIN OUTCOME MEASURE: Relative risk of EDV (RREDV) due to extreme mean temperature (24.5°C, 99th percentile) relative to the median (18.02°C), controlling for long-term trends, air pollution and humidity, and measuring effects delayed up to 10 days. RESULTS: Extreme heat was associated with higher single-lag EDV risk of RREDV 1.03(95% CI 1.01 to 1.05-single-lag 2), and cumulatively of RREDV 1.15 (95% CI 1.05 to 1.26-lag-cumulative 0-6). Strong risk was observed for patients with suicide attempts (RREDV 1.85, 95% CI 1.08 to 3.16) and neurotic disorders (RREDV 1.18, 95% CI 1.06 to 1.31). As to demographic subgroups, females (RREDV 1.20, 95% CI 1.08 to 1.34) and patients aged 18-64 (RREDV 1.18, 95% CI 1.07 to 1.30) were significantly endangered. Extreme heat resulted in lower risks of EDV for patients with organic disorders (RREDV 0.60, 95% CI 0.40 to 0.89), personality disorders (RREDV 0.48, 95% CI 0.26 to 0.91) and MH in general in the elderly ≥65 (RREDV 0.77, 95% CI 0.60 to 0.98). We found no significant RREDV among males and patients aged 0-17. CONCLUSION: The risk of MH-related EDV due to heat is elevated for the entire study population, but very differentiated by subgroups. This opens avenue for adaptation policies in healthcare: such as monitoring populations at risk and establishing an early warning systems to prevent exacerbation of MH episodes and to reduce suicide attempts. Further studies are welcome, why the reported risk differences occur and what, if any, role healthcare seeking barriers might play.


Assuntos
Temperatura Alta , Saúde Mental , Masculino , Idoso , Feminino , Humanos , Brasil/epidemiologia , Fatores de Tempo , Serviço Hospitalar de Emergência
4.
JMIR Mhealth Uhealth ; 11: e46980, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938879

RESUMO

BACKGROUND: Extreme weather, including heat and extreme rainfall, is projected to increase owing to climate change, which can have adverse impacts on human health. In particular, rural populations in sub-Saharan Africa are at risk because of a high burden of climate-sensitive diseases and low adaptive capacities. However, there is a lack of data on the regions that are anticipated to be most exposed to climate change. Improved public health surveillance is essential for better decision-making and health prioritization and to identify risk groups and suitable adaptation measures. Digital technologies such as consumer-grade wearable devices (wearables) may generate objective measurements to guide data-driven decision-making. OBJECTIVE: The main objective of this observational study was to examine the impact of weather exposure on population health in rural Burkina Faso using wearables. Specifically, this study aimed to assess the relationship between individual daily activity (steps), sleep duration, and heart rate (HR), as estimated by wearables, and exposure to heat and heavy rainfall. METHODS: Overall, 143 participants from the Nouna health and demographic surveillance system in Burkina Faso wore the Withings Pulse HR wearable 24/7 for 11 months. We collected continuous weather data using 5 weather stations throughout the study region. The heat index and wet-bulb globe temperature (WBGT) were calculated as measures of heat. We used linear mixed-effects models to quantify the relationship between exposure to heat and rainfall and the wearable parameters. Participants kept activity journals and completed a questionnaire on their perception of and adaptation to heat and other weather exposure. RESULTS: Sleep duration decreased significantly (P<.001) with higher heat exposure, with approximately 15 minutes shorter sleep duration during heat stress nights with a heat index value of ≥25 °C. Many participants (55/137, 40.1%) reported that heat affected them the most at night. During the day, most participants (133/137, 97.1%) engaged in outdoor physical work such as farming, housework, or fetching water. During the rainy season, when WBGT was highest, daily activity was highest and increased when the daily maximum WBGT surpassed 30 °C during the rainiest month. In the hottest month, daily activity decreased per degree increase in WBGT for values >30 °C. Nighttime HR showed no significant correlation with heat exposure. Daytime HR data were insufficient for analysis. We found no negative health impact associated with heavy rainfall. With increasing rainfall, sleep duration increased, average nightly HR decreased, and activity decreased. CONCLUSIONS: During the study period, participants were frequently exposed to heat and heavy rainfall. Heat was particularly associated with impaired sleep and daily activity. Essential tasks such as harvesting, fetching water, and caring for livestock expose this population to weather that likely has an adverse impact on their health. Further research is essential to guide interventions safeguarding vulnerable communities.


Assuntos
Clima Extremo , Saúde da População , Humanos , Burkina Faso/epidemiologia , População Rural , Água
5.
Lancet Reg Health Eur ; 32: 100701, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37583927

RESUMO

Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health-Climate Risk framework.

6.
Lancet Planet Health ; 7(6): e478-e489, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37286245

RESUMO

BACKGROUND: Extreme weather is becoming more common due to climate change and threatens human health through climate-sensitive diseases, with very uneven effects around the globe. Low-income, rural populations in the Sahel region of west Africa are projected to be severely affected by climate change. Climate-sensitive disease burdens have been linked to weather conditions in areas of the Sahel, although comprehensive, disease-specific empirical evidence on these relationships is scarce. In this study, we aim to provide an analysis of the associations between weather conditions and cause-specific deaths over a 16-year period in Nouna, Burkina Faso. METHODS: In this longitudinal study, we used de-identified, daily cause-of-death data from the Health and Demographic Surveillance System led by the Centre de Recherche en Santé de Nouna (CRSN) in the National Institute of Public Health of Burkina Faso, to assess temporal associations between daily and weekly weather conditions (maximum temperature and total precipitation) and deaths attributed to specific climate-sensitive diseases. We implemented distributed-lag zero-inflated Poisson models for 13 disease-age groups at daily and weekly time lags. We included all deaths from climate-sensitive diseases in the CRSN demographic surveillance area from Jan 1, 2000 to Dec 31, 2015 in the analysis. We report the exposure-response relationships at percentiles representative of the exposure distributions of temperature and precipitation in the study area. FINDINGS: Of 8256 total deaths in the CRSN demographic surveillance area over the observation period, 6185 (74·9%) were caused by climate-sensitive diseases. Deaths from communicable diseases were most common. Heightened risk of death from all climate-sensitive communicable diseases, and malaria (both across all ages and in children younger than 5 years), was associated with 14-day lagged daily maximum temperatures at or above 41·1°C, the 90th percentile of daily maximum temperatures, compared with 36·4°C, the median (all communicable diseases: 41·9°C relative risk [RR] 1·38 [95% CI 1·08-1·77], 42·8°C 1·57 [1·13-2·18]; malaria all ages: 41·1°C 1·47 [1·05-2·05], 41·9°C 1·78 [1·21-2·61], 42·8°C 2·35 [1·37-4·03]; malaria younger than 5 years: 41·9°C 1·67 [1·02-2·73]). Heightened risk of death from communicable diseases was also associated with 14-day lagged total daily precipitation at or below 0·1 cm, the 49th percentile of total daily precipitation, compared with 1·4 cm, the median (all communicable diseases: 0·0 cm 1·04 [1·02-1·07], 0·1 cm 1·01 [1·006-1·02]; malaria all ages: 0·0 cm 1·04 [1·01-1·08], 0·1 cm 1·02 [1·00-1·03]; malaria younger than 5 years: 0·0 cm 1·05 [1·01-1·10], 0·1 cm 1·02 [1·00-1·04]). The only significant association with a non-communicable disease outcome was a heightened risk of death from climate-sensitive cardiovascular diseases in individuals aged 65 years and older associated with 7-day lagged daily maximum temperatures at or above 41·9°C (41·9°C 2·25 [1·06-4·81], 42·8°C 3·68 [1·46-9·25]). Over 8 cumulative weeks, we found that the risk of death from communicable diseases was heightened at all ages from temperatures at or above 41·1°C (41·1°C 1·23 [1·05-1·43], 41·9°C 1·30 [1·08-1·56], 42·8°C 1·35 [1·09-1·66]) and risk of death from malaria was heightened by precipitation at or above 45·3 cm (all ages: 45·3 cm 1·68 [1·31-2·14], 61·6 cm 1·72 [1·27-2·31], 87·7 cm 1·72 [1·16-2·55]; children younger than 5 years: 45·3 cm 1·81 [1·36-2·41], 61·6 cm 1·82 [1·29-2·56], 87·7 cm 1·93 [1·24-3·00]). INTERPRETATION: Our results indicate a high burden of death related to extreme weather in the Sahel region of west Africa. This burden is likely to increase with climate change. Climate preparedness programmes-such as extreme weather alerts, passive cooling architecture, and rainwater drainage-should be tested and implemented to prevent deaths from climate-sensitive diseases in vulnerable communities in Burkina Faso and the wider Sahel region. FUNDING: Deutsche Forschungsgemeinschaft and the Alexander von Humboldt Foundation.


Assuntos
Doenças Transmissíveis , Malária , Criança , Humanos , Adulto , Recém-Nascido , Pessoa de Meia-Idade , Temperatura , Estudos Longitudinais , Burkina Faso/epidemiologia , População Rural
7.
Front Public Health ; 11: 1162535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325319

RESUMO

Background: Temperature, precipitation, relative humidity (RH), and Normalized Different Vegetation Index (NDVI), influence malaria transmission dynamics. However, an understanding of interactions between socioeconomic indicators, environmental factors and malaria incidence can help design interventions to alleviate the high burden of malaria infections on vulnerable populations. Our study thus aimed to investigate the socioeconomic and climatological factors influencing spatial and temporal variability of malaria infections in Mozambique. Methods: We used monthly malaria cases from 2016 to 2018 at the district level. We developed an hierarchical spatial-temporal model in a Bayesian framework. Monthly malaria cases were assumed to follow a negative binomial distribution. We used integrated nested Laplace approximation (INLA) in R for Bayesian inference and distributed lag nonlinear modeling (DLNM) framework to explore exposure-response relationships between climate variables and risk of malaria infection in Mozambique, while adjusting for socioeconomic factors. Results: A total of 19,948,295 malaria cases were reported between 2016 and 2018 in Mozambique. Malaria risk increased with higher monthly mean temperatures between 20 and 29°C, at mean temperature of 25°C, the risk of malaria was 3.45 times higher (RR 3.45 [95%CI: 2.37-5.03]). Malaria risk was greatest for NDVI above 0.22. The risk of malaria was 1.34 times higher (1.34 [1.01-1.79]) at monthly RH of 55%. Malaria risk reduced by 26.1%, for total monthly precipitation of 480 mm (0.739 [95%CI: 0.61-0.90]) at lag 2 months, while for lower total monthly precipitation of 10 mm, the risk of malaria was 1.87 times higher (1.87 [1.30-2.69]). After adjusting for climate variables, having lower level of education significantly increased malaria risk (1.034 [1.014-1.054]) and having electricity (0.979 [0.967-0.992]) and sharing toilet facilities (0.957 [0.924-0.991]) significantly reduced malaria risk. Conclusion: Our current study identified lag patterns and association between climate variables and malaria incidence in Mozambique. Extremes in climate variables were associated with an increased risk of malaria transmission, peaks in transmission were varied. Our findings provide insights for designing early warning, prevention, and control strategies to minimize seasonal malaria surges and associated infections in Mozambique a region where Malaria causes substantial burden from illness and deaths.


Assuntos
Clima , Malária , Humanos , Moçambique/epidemiologia , Teorema de Bayes , Malária/epidemiologia , Análise Espaço-Temporal
8.
Front Public Health ; 10: 972177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249225

RESUMO

Background: Wearable devices may generate valuable data for global health research for low- and middle-income countries (LMICs). However, wearable studies in LMICs are scarce. This study aims to investigate the use of consumer-grade wearables to generate individual-level data in vulnerable populations in LMICs, focusing on the acceptability (quality of the devices being accepted or even liked) and feasibility (the state of being workable, realizable, and practical, including aspects of data completeness and plausibility). Methods: We utilized a mixed-methods approach within the health and demographic surveillance system (HDSS) to conduct a case study in Nouna, Burkina Faso (BF). All HDSS residents older than 6 years were eligible. N = 150 participants were randomly selected from the HDSS database to wear a wristband tracker (Withings Pulse HR) and n = 69 also a thermometer patch (Tucky thermometer) for 3 weeks. Every 4 days, a trained field worker conducted an acceptability questionnaire with participants, which included questions for the field workers as well. Descriptive and qualitative thematic analyses were used to analyze the responses of study participants and field workers. Results: In total, n = 148 participants were included (and n = 9 field workers). Participant's acceptability ranged from 94 to 100% throughout the questionnaire. In 95% of the cases (n = 140), participants reported no challenges with the wearable. Most participants were not affected by the wearable in their daily activities (n = 122, 83%) and even enjoyed wearing them (n = 30, 20%). Some were concerned about damage to the wearables (n = 7, 5%). Total data coverage (i.e., the proportion of the whole 3-week study duration covered by data) was 43% for accelerometer (activity), 3% for heart rate, and 4% for body shell temperature. Field workers reported technical issues like faulty synchronization (n = 6, 1%). On average, participants slept 7 h (SD 3.2 h) and walked 8,000 steps per day (SD 5573.6 steps). Acceptability and data completeness were comparable across sex, age, and study arms. Conclusion: Wearable devices were well-accepted and were able to produce continuous measurements, highlighting the potential for wearables to generate large datasets in LMICs. Challenges constituted data missingness mainly of technical nature. To our knowledge, this is the first study to use consumer-focused wearables to generate objective datasets in rural BF.


Assuntos
Dispositivos Eletrônicos Vestíveis , Burkina Faso/epidemiologia , Humanos , População Rural , Inquéritos e Questionários
9.
JMIR Mhealth Uhealth ; 10(9): e39532, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083624

RESUMO

BACKGROUND: Although climate change is one of the biggest global health threats, individual-level and short-term data on direct exposure and health impacts are still scarce. Wearable electronic devices (wearables) present a potential solution to this research gap. Wearables have become widely accepted in various areas of health research for ecological momentary assessment, and some studies have used wearables in the field of climate change and health. However, these studies vary in study design, demographics, and outcome variables, and existing research has not been mapped. OBJECTIVE: In this review, we aimed to map existing research on wearables used to detect direct health impacts and individual exposure during climate change-induced weather extremes, such as heat waves or wildfires. METHODS: We conducted a scoping review according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework and systematically searched 6 databases (PubMed [MEDLINE], IEEE Xplore, CINAHL [EBSCOhost], WoS, Scopus, Ovid [MEDLINE], and Google Scholar). The search yielded 1871 results. Abstracts and full texts were screened by 2 reviewers (MK and IM) independently using the inclusion and exclusion criteria. The inclusion criteria comprised studies published since 2010 that used off-the-shelf wearables that were neither invasive nor obtrusive to the user in the setting of climate change-related weather extremes. Data were charted using a structured form, and the study outcomes were narratively synthesized. RESULTS: The review included 55,284 study participants using wearables in 53 studies. Most studies were conducted in upper-middle-income and high-income countries (50/53, 94%) in urban environments (25/53, 47%) or in a climatic chamber (19/53, 36%) and assessed the health effects of heat exposure (52/53, 98%). The majority reported adverse health effects of heat exposure on sleep, physical activity, and heart rate. The remaining studies assessed occupational heat stress or compared individual- and area-level heat exposure. In total, 26% (14/53) of studies determined that all examined wearables were valid and reliable for measuring health parameters during heat exposure when compared with standard methods. CONCLUSIONS: Wearables have been used successfully in large-scale research to measure the health implications of climate change-related weather extremes. More research is needed in low-income countries and vulnerable populations with pre-existing conditions. In addition, further research could focus on the health impacts of other climate change-related conditions and the effectiveness of adaptation measures at the individual level to such weather extremes.


Assuntos
Mudança Climática , Dispositivos Eletrônicos Vestíveis , Exercício Físico , Humanos , Sono , Tempo (Meteorologia)
10.
NPJ Digit Med ; 5(1): 99, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853936

RESUMO

Mobile health (mHealth) interventions hold promise for addressing the epidemic of noncommunicable diseases (NCDs) in low- and middle-income countries (LMICs) by assisting healthcare providers managing these disorders in low-resource settings. We aimed to systematically identify and assess provider-facing mHealth applications used to screen for, diagnose, or monitor NCDs in LMICs. In this systematic review, we searched the indexing databases of PubMed, Web of Science, and Cochrane Central for studies published between January 2007 and October 2019. We included studies of technologies that were: (i) mobile phone- or tablet-based, (ii) able to screen for, diagnose, or monitor an NCD of public health importance in LMICs, and (iii) targeting health professionals as users. We extracted disease type, intervention purpose, target population, study population, sample size, study methodology, technology stage, country of development, operating system, and cost. Our initial search retrieved 13,262 studies, 315 of which met inclusion criteria and were analyzed. Cardiology was the most common clinical domain of the technologies evaluated, with 89 publications. mHealth innovations were predominantly developed using Apple's iOS operating system. Cost data were provided in only 50 studies, but most technologies for which this information was available cost less than 20 USD. Only 24 innovations targeted the ten NCDs responsible for the greatest number of disability-adjusted life years lost globally. Most publications evaluated products created in high-income countries. Reported mHealth technologies are well-developed, but their implementation in LMICs faces operating system incompatibility and a relative neglect of NCDs causing the greatest disease burden.

11.
JMIR Mhealth Uhealth ; 10(1): e34384, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076409

RESUMO

BACKGROUND: Wearable devices hold great promise, particularly for data generation for cutting-edge health research, and their demand has risen substantially in recent years. However, there is a shortage of aggregated insights into how wearables have been used in health research. OBJECTIVE: In this review, we aim to broadly overview and categorize the current research conducted with affordable wearable devices for health research. METHODS: We performed a scoping review to understand the use of affordable, consumer-grade wearables for health research from a population health perspective using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework. A total of 7499 articles were found in 4 medical databases (PubMed, Ovid, Web of Science, and CINAHL). Studies were eligible if they used noninvasive wearables: worn on the wrist, arm, hip, and chest; measured vital signs; and analyzed the collected data quantitatively. We excluded studies that did not use wearables for outcome assessment and prototype studies, devices that cost >€500 (US $570), or obtrusive smart clothing. RESULTS: We included 179 studies using 189 wearable devices covering 10,835,733 participants. Most studies were observational (128/179, 71.5%), conducted in 2020 (56/179, 31.3%) and in North America (94/179, 52.5%), and 93% (10,104,217/10,835,733) of the participants were part of global health studies. The most popular wearables were fitness trackers (86/189, 45.5%) and accelerometer wearables, which primarily measure movement (49/189, 25.9%). Typical measurements included steps (95/179, 53.1%), heart rate (HR; 55/179, 30.7%), and sleep duration (51/179, 28.5%). Other devices measured blood pressure (3/179, 1.7%), skin temperature (3/179, 1.7%), oximetry (3/179, 1.7%), or respiratory rate (2/179, 1.1%). The wearables were mostly worn on the wrist (138/189, 73%) and cost <€200 (US $228; 120/189, 63.5%). The aims and approaches of all 179 studies revealed six prominent uses for wearables, comprising correlations-wearable and other physiological data (40/179, 22.3%), method evaluations (with subgroups; 40/179, 22.3%), population-based research (31/179, 17.3%), experimental outcome assessment (30/179, 16.8%), prognostic forecasting (28/179, 15.6%), and explorative analysis of big data sets (10/179, 5.6%). The most frequent strengths of affordable wearables were validation, accuracy, and clinical certification (104/179, 58.1%). CONCLUSIONS: Wearables showed an increasingly diverse field of application such as COVID-19 prediction, fertility tracking, heat-related illness, drug effects, and psychological interventions; they also included underrepresented populations, such as individuals with rare diseases. There is a lack of research on wearable devices in low-resource contexts. Fueled by the COVID-19 pandemic, we see a shift toward more large-sized, web-based studies where wearables increased insights into the developing pandemic, including forecasting models and the effects of the pandemic. Some studies have indicated that big data extracted from wearables may potentially transform the understanding of population health dynamics and the ability to forecast health trends.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Humanos , Pandemias , SARS-CoV-2
12.
PLoS One ; 16(9): e0257170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591893

RESUMO

As the epidemiological transition progresses throughout sub-Saharan Africa, life lived with diseases is an increasingly important part of a population's burden of disease. The burden of disease of climate-sensitive health outcomes is projected to increase considerably within the next decades. Objectively measured, reliable population health data is still limited and is primarily based on perceived illness from recall. Technological advances like non-invasive, consumer-grade wearable devices may play a vital role in alleviating this data gap and in obtaining insights on the disease burden in vulnerable populations, such as heat stress on human cardiovascular response. The overall goal of this study is to investigate whether consumer-grade wearable devices are an acceptable, feasible and valid means to generate data on the individual level in low-resource contexts. Three hundred individuals are recruited from the two study locations in the Nouna health and demographic surveillance system (HDSS), Burkina Faso, and the Siaya HDSS, Kenya. Participants complete a structured questionnaire that comprises question items on acceptability and feasibility under the supervision of trained data collectors. Validity will be evaluated by comparing consumer-grade wearable devices to research-grade devices. Furthermore, we will collect demographic data as well as the data generated by wearable devices. This study will provide insights into the usage of consumer-grade wearable devices to measure individual vital signs in low-resource contexts, such as Burkina Faso and Kenya. Vital signs comprising activity (steps), sleep (duration, quality) and heart rate (hr) are important measures to gain insights on individual behavior and activity patterns in low-resource contexts. These vital signs may be associated with weather variables-as we gather them from weather stations that we have setup as part of this study to cover the whole Nouna and Siaya HDSSs-in order to explore changes in behavior and other variables, such as activity, sleep, hr, during extreme weather events like heat stress exposure. Furthermore, wearable data could be linked to health outcomes and weather events. As a result, consumer-grade wearables may serve as a supporting technology for generating reliable measurements in low-resource contexts and investigating key links between weather occurrences and health outcomes. Thus, wearable devices may provide insights to better inform mitigation and adaptation interventions in these low-resource settings that are direly faced by climate change-induced changes, such as extreme weather events.


Assuntos
Mudança Climática , Recursos em Saúde , Saúde , Pesquisa , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Burkina Faso , Criança , Estudos de Viabilidade , Feminino , Humanos , Quênia , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
13.
Glob Health Action ; 14(sup1): 1984014, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377292

RESUMO

Weather, climate, and climate change are affecting human health, with scientific evidence increasing substantially over the past two decades, but with very limited research from low- and middle-income countries. The health effects of climate change occur mainly because of the consequences of rising temperatures, rising sea levels, and an increase in extreme weather events. These exposures interact with demographic, socio-economic, and environmental factors, as well as access to and the quality of health care, to affect the magnitude and pattern of risks. Health risks are unevenly distributed around the world, and within countries and across population groups. Existing health challenges and inequalities are likely to be exacerbated by climate change. This narrative review provides an overview of the health impacts of weather, climate, and climate change, particularly on vulnerable regions and populations in sub-Saharan Africa and South Asia, and discusses the importance of protecting human health in a changing climate; such measures are critical to reducing poverty and inequality at all scales. Three case summaries from the INDEPTH Health and Demographic Surveillance Systems highlight examples of research that quantified associations between weather and health outcomes. These and comparable surveillance systems can provide critical knowledge to increase resilience and decrease inequalities in an increasingly warming world.


Assuntos
Mudança Climática , Tempo (Meteorologia) , África Subsaariana , Ásia , Humanos , Temperatura
14.
Environ Health Perspect ; 126(1): 017004, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29342452

RESUMO

BACKGROUND: Numerous studies have reported a strong association between temperature and mortality. Additional insights can be gained from investigating the effects of temperature on years of life lost (YLL), considering the life expectancy at the time of death. OBJECTIVES: The goal of this work was to assess the association between temperature and YLL at seven low-, middle-, and high-income sites. METHODS: We obtained meteorological and population data for at least nine years from four Health and Demographic Surveillance Sites in Kenya (western Kenya, Nairobi), Burkina Faso (Nouna), and India (Vadu), as well as data from cities in the United States (Philadelphia, Phoenix) and Sweden (Stockholm). A distributed lag nonlinear model was used to estimate the association of daily maximum temperature and daily YLL, lagged 0-14 d. The reference value was set for each site at the temperature with the lowest YLL. RESULTS: Generally, YLL increased with higher temperature, starting day 0. In Nouna, the hottest location, with a minimum YLL temperature at the first percentile, YLL increased consistently with higher temperatures. In Vadu, YLL increased in association with heat, whereas in Nairobi, YLL increased in association with both low and high temperatures. Associations with cold and heat were evident for Phoenix (stronger for heat), Stockholm, and Philadelphia (both stronger for cold). Patterns of associations with mortality were generally similar to those with YLL. CONCLUSIONS: Both high and low temperatures are associated with YLL in high-, middle-, and low-income countries. Policy guidance and health adaptation measures might be improved with more comprehensive indicators of the health burden of high and low temperatures such as YLL. https://doi.org/10.1289/EHP1745.


Assuntos
Renda , Expectativa de Vida/tendências , Mortalidade/tendências , Temperatura , Idoso , Idoso de 80 Anos ou mais , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Estudos Retrospectivos
15.
BMJ Open ; 7(11): e018068, 2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29102994

RESUMO

OBJECTIVES: Investigate the association of heat exposure on years of life lost (YLL) from non-communicable diseases (NCD) in Nouna, Burkina Faso, between 2000 and 2010. DESIGN: Daily time series regression analysis using distributed lag non-linear models, assuming a quasi-Poisson distribution of YLL. SETTING: Nouna Health and Demographic Surveillance System, Kossi Province, Rural Burkina Faso. PARTICIPANTS: 18 367 NCD-YLL corresponding to 790 NCD deaths recorded in the Nouna Health and Demographic Surveillance Site register over 11 years. MAIN OUTCOME MEASURE: Excess mean daily NCD-YLL were generated from the relative risk of maximum daily temperature on NCD-YLL, including effects delayed up to 14 days. RESULTS: Daily average NCD-YLL were 4.6, 2.4 and 2.1 person-years for all ages, men and women, respectively. Moderate 4-day cumulative rise in maximum temperature from 36.4°C (50th percentile) to 41.4°C (90th percentile) resulted in 4.44 (95% CI 0.24 to 12.28) excess daily NCD-YLL for all ages, rising to 7.39 (95% CI 0.32 to 24.62) at extreme temperature (42.8°C; 99th percentile). The strongest health effects manifested on the day of heat exposure (lag 0), where 0.81 (95% CI 0.13 to 1.59) excess mean NCD-YLL occurred daily at 41.7°C compared with 36.4°C, diminishing in statistical significance after 4 days. At lag 0, daily excess mean NCD-YLL were higher for men, 0.58 (95% CI 0.11 to 1.15) compared with women, 0.15 (95% CI -0.25 to 9.63) at 41.7°C vs 36.4°C. CONCLUSION: Premature death from NCD was elevated significantly with moderate and extreme heat exposure. These findings have important implications for developing adaptation and mitigation strategies to reduce ambient heat exposure and preventive measures for limiting NCD in Africa.


Assuntos
Temperatura Alta , Mortalidade Prematura , Doenças não Transmissíveis , Burkina Faso/epidemiologia , Calor Extremo , Feminino , Humanos , Masculino , Doenças não Transmissíveis/mortalidade , Distribuição de Poisson
16.
Environ Health Perspect ; 125(8): 087008, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28885979

RESUMO

BACKGROUND: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. OBJECTIVES: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. METHODS: We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. RESULTS: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. CONCLUSIONS: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.


Assuntos
Aclimatação/fisiologia , Mudança Climática , Temperatura Alta , Mortalidade/tendências , Adaptação Fisiológica , Cidades , Previsões , Humanos , Modelos Teóricos
17.
EBioMedicine ; 6: 258-268, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27211569

RESUMO

INTRODUCTION: Climate change and rapid population ageing are significant public health challenges. Understanding which health problems are affected by temperature is important for preventing heat and cold-related deaths and illnesses, particularly in the elderly. Here we present a systematic review and meta-analysis on the effects of ambient hot and cold temperature (excluding heat/cold wave only studies) on elderly (65+ years) mortality and morbidity. METHODS: Time-series or case-crossover studies comprising cause-specific cases of elderly mortality (n=3,933,398) or morbidity (n=12,157,782) were pooled to obtain a percent change (%) in risk for temperature exposure on cause-specific disease outcomes using a random-effects meta-analysis. RESULTS: A 1°C temperature rise increased cardiovascular (3.44%, 95% CI 3.10-3.78), respiratory (3.60%, 3.18-4.02), and cerebrovascular (1.40%, 0.06-2.75) mortality. A 1°C temperature reduction increased respiratory (2.90%, 1.84-3.97) and cardiovascular (1.66%, 1.19-2.14) mortality. The greatest risk was associated with cold-induced pneumonia (6.89%, 20-12.99) and respiratory morbidity (4.93% 1.54-8.44). A 1°C temperature rise increased cardiovascular, respiratory, diabetes mellitus, genitourinary, infectious disease and heat-related morbidity. DISCUSSION: Elevated risks for the elderly were prominent for temperature-induced cerebrovascular, cardiovascular, diabetes, genitourinary, infectious disease, heat-related, and respiratory outcomes. These risks will likely increase with climate change and global ageing.


Assuntos
Doenças Cardiovasculares/mortalidade , Transtornos Cerebrovasculares/mortalidade , Mudança Climática/mortalidade , Doenças Respiratórias/mortalidade , Idoso , Idoso de 80 Anos ou mais , Estudos Cross-Over , Diabetes Mellitus/mortalidade , Feminino , Doenças Urogenitais Femininas/mortalidade , Humanos , Masculino , Doenças Urogenitais Masculinas/mortalidade , Morbidade , Fatores de Risco , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...