Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 83(4): 499-507, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38182404

RESUMO

OBJECTIVES: Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides (AAV) are life-threatening systemic autoimmune diseases manifesting in the kidneys as necrotizing crescentic glomerulonephritis (NCGN). ANCA antigens are myeloperoxidase (MPO) or proteinase 3. Current treatments include steroids, cytotoxic drugs and B cell-depleting antibodies. The use of chimeric antigen receptor (CAR) T cells in autoimmune diseases is a promising new therapeutic approach. We tested the hypothesis that CAR T cells targeting CD19 deplete B cells, including MPO-ANCA-producing B cells, thereby protecting from ANCA-induced NCGN. METHODS: We tested this hypothesis in a preclinical MPO-AAV mouse model. NCGN was established by immunisation of MPO-/- mice with murine MPO, followed by irradiation and transplantation with haematopoietic cells from wild-type mice alone or together with either CD19-targeting CAR T cells or control CAR T cells. RESULTS: CD19 CAR T cells efficiently migrated to and persisted in bone marrow, spleen, peripheral blood and kidneys for up to 8 weeks. CD19 CAR T cells, but not control CAR T cells, depleted B cells and plasmablasts, enhanced the MPO-ANCA decline, and most importantly protected from NCGN. CONCLUSION: Our proof-of-principle study may encourage further exploration of CAR T cells as a treatment for ANCA-vasculitis patients with the goal of drug-free remission.


Assuntos
Injúria Renal Aguda , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Glomerulonefrite , Humanos , Camundongos , Animais , Anticorpos Anticitoplasma de Neutrófilos , Linfócitos T , Peroxidase
2.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205081

RESUMO

Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.


Assuntos
Elementos de DNA Transponíveis , RNA Longo não Codificante , Animais , Núcleo Celular/genética , Histonas/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas do Tecido Nervoso , Paraspeckles , RNA Longo não Codificante/metabolismo , Transposases/genética , Transposases/metabolismo
3.
Mol Ther ; 30(11): 3358-3378, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35821635

RESUMO

Chimeric antigen receptor (CAR) T cells have revolutionized treatment of B cell malignancies. However, enhancing the efficacy of engineered T cells without compromising their safety is warranted. The estrogen receptor-binding fragment-associated antigen 9 (EBAG9) inhibits release of cytolytic enzymes from cytotoxic T lymphocytes. Here, we examined the potency of EBAG9 silencing for the improvement of adoptive T cell therapy. MicroRNA (miRNA)-mediated EBAG9 downregulation in transplanted cytolytic CD8+ T cells (CTLs) from immunized mice improved their cytolytic competence in a tumor model. In tolerant female recipient mice that received organ transplants, a minor histocompatibility antigen was turned into a rejection antigen by Ebag9 deletion, indicating an immune checkpoint function for EBAG9. Considerably fewer EBAG9-silenced human CAR T cells were needed for tumor growth control in a xenotransplantation model. Transcriptome profiling did not reveal additional risks regarding genotoxicity or aberrant differentiation. A single-step retrovirus transduction process links CAR or TCR expression with miRNA-mediated EBAG9 downregulation. Despite higher cytolytic efficacy, release of cytokines associated with cytokine release syndrome remains unaffected. Collectively, EBAG9 silencing enhances effector capacity of TCR- and CAR-engineered T cells, results in improved tumor eradication, facilitates efficient manufacturing, and decreases the therapeutic dose.


Assuntos
Antígenos de Neoplasias , Imunoterapia Adotiva , Neoplasias , Animais , Feminino , Humanos , Camundongos , MicroRNAs/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Citotóxicos , Inativação Gênica , Proteínas de Checkpoint Imunológico , Antígenos de Neoplasias/genética
4.
Methods Mol Biol ; 2521: 67-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732993

RESUMO

Chimeric antigen receptor (CAR) T cell therapy that involves genetic engineering a patient's own immune cells with antigen-specific receptors has shown remarkable efficacy in blood cancer treatment. Numerous clinical studies with CAR T cells targeting the blood cell surface protein CD19 led to the FDA 's first approval of a genetically engineered cell therapy. The process of generating potent CAR T cells involves several carefully performed manufacturing steps. Here, we describe the generation of redirected engineered human CAR T cells for preclinical studies starting with the CAR design, retroviral gene transfer, detection of CAR expression, and expansion of transduced T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva , Receptores de Antígenos/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
5.
Eur J Immunol ; 52(8): 1335-1349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579560

RESUMO

CD4+ FOXP3+ Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE. Following disease induction, autoreactive Tregs upregulated LAG-3 and CTLA-4 in LNs, while IL-10 and amphiregulin (AREG) were increased in CNS Tregs. Using genetic approaches, we demonstrated that IL-10, CTLA-4, and LAG-3 were nonredundantly required for the protective function of antigen receptor-engineered Tregs against EAE in cell therapy whereas AREG was dispensable. Treg-derived IL-10 and CTLA-4 were both required to suppress acute autoreactive CD4+ T-cell activation, which correlated with disease control. These molecules also affected the accumulation in the recipients of engineered Tregs themselves, underlying complex roles for these molecules. Noteworthy, despite the persistence of the transferred Tregs and their protective effect, autoreactive T cells eventually accumulated in the spleen of treated mice. In conclusion, this study highlights the remarkable power of antigen receptor-engineered Tregs to appropriately provide multiple suppressive factors nonredundantly necessary to prevent autoimmune attacks.


Assuntos
Autoimunidade , Doenças do Sistema Imunitário , Animais , Antígeno CTLA-4 , Terapia Baseada em Transplante de Células e Tecidos , Fatores de Transcrição Forkhead/genética , Interleucina-10 , Camundongos , Receptores de Antígenos , Linfócitos T Reguladores
6.
Nat Commun ; 12(1): 240, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431832

RESUMO

CAR-T cell therapy targeting CD19 demonstrated strong activity against advanced B cell leukemia, however shows less efficacy against lymphoma with nodal dissemination. To target both B cell Non-Hodgkin's lymphoma (B-NHLs) and follicular T helper (Tfh) cells in the tumor microenvironment (TME), we apply here a chimeric antigen receptor (CAR) that recognizes human CXCR5 with high avidity. CXCR5, physiologically expressed on mature B and Tfh cells, is also highly expressed on nodal B-NHLs. Anti-CXCR5 CAR-T cells eradicate B-NHL cells and lymphoma-supportive Tfh cells more potently than CD19 CAR-T cells in vitro, and they efficiently inhibit lymphoma growth in a murine xenograft model. Administration of anti-murine CXCR5 CAR-T cells in syngeneic mice specifically depletes endogenous and malignant B and Tfh cells without unexpected on-target/off-tumor effects. Collectively, anti-CXCR5 CAR-T cells provide a promising treatment strategy for nodal B-NHLs through the simultaneous elimination of lymphoma B cells and Tfh cells of the tumor-supporting TME.


Assuntos
Linfócitos B/imunologia , Linfoma não Hodgkin/imunologia , Neoplasias/imunologia , Receptores CXCR5/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células HEK293 , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Viruses ; 12(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202765

RESUMO

The HML2 subfamily of HERV-K (henceforth HERV-K) represents the most recently endogenized retrovirus in the human genome. While the products of certain HERV-K genomic copies are expressed in normal tissues, they are upregulated in several pathological conditions, including various tumors. It remains unclear whether HERV-K(HML2)-encoded products overexpressed in cancer contribute to disease progression or are merely by-products of tumorigenesis. Here, we focus on the regulatory activities of the Long Terminal Repeats (LTR5_Hs) of HERV-K and the potential role of the HERV-K-encoded Rec in melanoma. Our regulatory genomics analysis of LTR5_Hs loci indicates that Melanocyte Inducing Transcription Factor (MITF) (also known as binds to a canonical E-box motif (CA(C/T)GTG) within these elements in proliferative type of melanoma, and that depletion of MITF results in reduced HERV-K expression. In turn, experimentally depleting Rec in a proliferative melanoma cell line leads to lower mRNA levels of MITF and its predicted target genes. Furthermore, Rec knockdown leads to an upregulation of epithelial-to-mesenchymal associated genes and an enhanced invasion phenotype of proliferative melanoma cells. Together these results suggest the existence of a regulatory loop between MITF and Rec that may modulate the transition from proliferative to invasive stages of melanoma. Because HERV-K(HML2) elements are restricted to hominoid primates, these findings might explain certain species-specific features of melanoma progression and point to some limitations of animal models in melanoma studies.


Assuntos
Progressão da Doença , Retrovirus Endógenos/genética , Melanoma/virologia , Proteínas dos Retroviridae/genética , Linhagem Celular Tumoral , Proliferação de Células , Retrovirus Endógenos/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Loci Gênicos , Humanos , Proteínas dos Retroviridae/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie , Sequências Repetidas Terminais
8.
Hum Gene Ther ; 29(5): 569-584, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29562762

RESUMO

Transposon-based vectors have entered clinical trials as an alternative to viral vectors for genetic engineering of T cells. However, transposon vectors require DNA transfection into T cells, which were found to cause adverse effects. T-cell viability was decreased in a dose-dependent manner, and DNA-transfected T cells showed a delayed response upon T-cell receptor (TCR) stimulation with regard to blast formation, proliferation, and surface expression of CD25 and CD28. Gene expression analysis demonstrated a DNA-dependent induction of a type I interferon response and interferon-ß upregulation. By combining Sleeping Beauty transposon minicircle vectors with SB100X transposase-encoding RNA, it was possible to reduce the amount of total DNA required, and stable expression of therapeutic TCRs was achieved in >50% of human T cells without enrichment. The TCR-engineered T cells mediated effective tumor cell killing and cytokine secretion upon antigen-specific stimulation. Additionally, the Sleeping Beauty transposon system was further improved by miRNAs silencing the endogenous TCR chains. These miRNAs increased the surface expression of the transgenic TCR, diminished mispairing with endogenous TCR chains, and enhanced antigen-specific T-cell functionality. This approach facilitates the rapid non-viral generation of highly functional, engineered T cells for immunotherapy.


Assuntos
Elementos de DNA Transponíveis/genética , Melanoma/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD28/uso terapêutico , Engenharia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva/métodos , Interferon Tipo I/genética , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/uso terapêutico , Melanoma/genética , Melanoma/terapia , MicroRNAs/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transposases/genética
9.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031331

RESUMO

Cell-type-specific and inducible alternative splicing has a fundamental impact on regulating gene expression and cellular function in a variety of settings, including activation and differentiation. We have recently shown that activation-induced skipping of TRAF3 exon 8 activates noncanonical NF-κB signaling upon T cell stimulation, but the regulatory basis for this splicing event remains unknown. Here we identify cis- and trans-regulatory elements rendering this splicing switch activation dependent and cell type specific. The cis-acting element is located 340 to 440 nucleotides upstream of the regulated exon and acts in a distance-dependent manner, since altering the location reduces its activity. A small interfering RNA screen, followed by cross-link immunoprecipitation and mutational analyses, identified CELF2 and hnRNP C as trans-acting factors that directly bind the regulatory sequence and together mediate increased exon skipping in activated T cells. CELF2 expression levels correlate with TRAF3 exon skipping in several model systems, suggesting that CELF2 is the decisive factor, with hnRNP C being necessary but not sufficient. These data suggest an interplay between CELF2 and hnRNP C as the mechanistic basis for activation-dependent alternative splicing of TRAF3 exon 8 and additional exons and uncover an intronic splicing silencer whose full activity depends on the precise location more than 300 nucleotides upstream of the regulated exon.


Assuntos
Processamento Alternativo/genética , Proteínas CELF/metabolismo , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Íntrons/genética , Ativação Linfocitária/genética , Proteínas do Tecido Nervoso/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Sítios de Ligação , Células HEK293 , Humanos , Poli U/metabolismo , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo , Elementos Silenciadores Transcricionais/genética , Linfócitos T/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo
10.
Elife ; 52016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27823582

RESUMO

T cells engineered to express a tumor-specific αß T cell receptor (TCR) mediate anti-tumor immunity. However, mispairing of the therapeutic αß chains with endogenous αß chains reduces therapeutic TCR surface expression and generates self-reactive TCRs. We report a general strategy to prevent TCR mispairing: swapping constant domains between the α and ß chains of a therapeutic TCR. When paired, domain-swapped (ds)TCRs assemble with CD3, express on the cell surface, and mediate antigen-specific T cell responses. By contrast, dsTCR chains mispaired with endogenous chains cannot properly assemble with CD3 or signal, preventing autoimmunity. We validate this approach in cell-based assays and in a mouse model of TCR gene transfer-induced graft-versus-host disease. We also validate a related approach whereby replacement of αß TCR domains with corresponding γδ TCR domains yields a functional TCR that does not mispair. This work enables the design of safer TCR gene therapies for cancer immunotherapy.


Assuntos
Genes Codificadores dos Receptores de Linfócitos T , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Camundongos , Domínios Proteicos , Recombinação Genética
11.
Immunity ; 44(5): 1114-26, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192577

RESUMO

Regulatory T (Treg) cells expressing Foxp3 transcripton factor are essential for immune homeostasis. They arise in the thymus as a separate lineage from conventional CD4(+)Foxp3(-) T (Tconv) cells. Here, we show that the thymic development of Treg cells depends on the expression of their endogenous cognate self-antigen. The formation of these cells was impaired in mice lacking this self-antigen, while Tconv cell development was not negatively affected. Thymus-derived Treg cells were selected by self-antigens in a specific manner, while autoreactive Tconv cells were produced through degenerate recognition of distinct antigens. These distinct modes of development were associated with the expression of T cell receptor of higher functional avidity for self-antigen by Treg cells than Tconv cells, a difference subsequently essential for the control of autoimmunity. Our study documents how self-antigens define the repertoire of thymus-derived Treg cells to subsequently endow this cell type with the capacity to undermine autoimmune attack.


Assuntos
Antígeno CTLA-4/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/metabolismo , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Timo/imunologia , Animais , Autoantígenos/imunologia , Antígeno CTLA-4/genética , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T/genética
12.
Mol Ther ; 24(3): 592-606, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26755332

RESUMO

The inherent risks associated with vector insertion in gene therapy need to be carefully assessed. We analyzed the genome-wide distributions of Sleeping Beauty (SB) and piggyBac (PB) transposon insertions as well as MLV retrovirus and HIV lentivirus insertions in human CD4(+) T cells with respect to a panel of 40 chromatin states. The distribution of SB transposon insertions displayed the least deviation from random, while the PB transposon and the MLV retrovirus showed unexpected parallels across all chromatin states. Both MLV and PB insertions are enriched at transcriptional start sites (TSSs) and co-localize with BRD4-associated sites. We demonstrate physical interaction between the PB transposase and bromodomain and extraterminal domain proteins (including BRD4), suggesting convergent evolution of a tethering mechanism that directs integrating genetic elements into TSSs. We detect unequal biases across the four systems with respect to targeting genes whose deregulation has been previously linked to serious adverse events in gene therapy clinical trials. The SB transposon has the highest theoretical chance of targeting a safe harbor locus in the human genome. The data underscore the significance of vector choice to reduce the mutagenic load on cells in clinical applications.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Elementos de DNA Transponíveis , Estudo de Associação Genômica Ampla , Vírus da Leucemia Murina/fisiologia , Integração Viral , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Ligação Proteica , Sítio de Iniciação de Transcrição , Transposases/metabolismo
13.
Mol Ther ; 22(11): 1983-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25048215

RESUMO

Genetically modified T cells that express a transduced T cell receptor (TCR) α/ß heterodimer in addition to their endogenous TCR are used in clinical studies to treat cancer. These cells express two TCR-α and two TCR-ß chains that do not only compete for CD3 proteins but also form potentially self-reactive mixed TCR dimers, composed of endogenous and transferred chains. To overcome these deficits, we developed an RNAi-TCR replacement vector that simultaneously silences the endogenous TCR and expresses an RNAi-resistant TCR. Transduction of the virus-specific P14 TCR without RNAi resulted in unequal P14 TCR-α and -ß chain surface levels, indicating heterodimerization with endogenous TCR chains. Such unequal expression was also observed following TCR gene optimization. Equal surface levels of the introduced TCR chains were however achieved by silencing the endogenous TCR. Importantly, all mice that received cells transduced with the native or optimized P14 TCR developed lethal TCR gene transfer-induced graft-versus-host-disease (TI-GVHD) due to formation of mixed TCR dimers. In contrast, TI-GVHD was almost completely prevented when using the RNAi-TCR replacement vector. Our data demonstrate that RNAi-assisted TCR replacement reduces the formation of mixed TCR dimers, and thereby significantly reduces the risk of TI-GVHD in TCR gene therapy.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Autoimunidade , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Vetores Genéticos/administração & dosagem , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Camundongos , Interferência de RNA , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética
14.
Sci Transl Med ; 5(192): 192ra87, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23825303

RESUMO

Adoptive immunotherapy is a promising therapeutic approach for the treatment of chronic infections and cancer. T cells within a certain range of high avidity for their cognate ligand are believed to be most effective. T cell receptor (TCR) transfer experiments indicate that a major part of avidity is hardwired within the structure of the TCR. Unfortunately, rapid measurement of structural avidity of TCRs is difficult on living T cells. We developed a technology where dissociation (koff rate) of truly monomeric peptide-major histocompatibility complex (pMHC) molecules bound to surface-expressed TCRs can be monitored by real-time microscopy in a highly reliable manner. A first evaluation of this method on distinct human cytomegalovirus (CMV)-specific T cell populations revealed unexpected differences in the koff rates. CMV-specific T cells are currently being evaluated in clinical trials for efficacy in adoptive immunotherapy; therefore, determination of koff rates could guide selection of the most effective donor cells. Indeed, in two different murine infection models, we demonstrate that T cell populations with lower koff rates confer significantly better protection than populations with fast koff rates. These data indicate that koff rate measurements can improve the predictability of adoptive immunotherapy and provide diagnostic information on the in vivo quality of T cells.


Assuntos
Transferência Adotiva , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Genes MHC Classe I/genética , Humanos , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia
15.
PLoS One ; 8(4): e61384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637823

RESUMO

Adoptive therapy using T cells redirected to target tumor- or infection-associated antigens is a promising strategy that has curative potential and broad applicability. In order to accelerate the screening process for suitable antigen-specific T cell receptors (TCRs), we developed a new approach circumventing conventional in vitro expansion-based strategies. Direct isolation of paired full-length TCR sequences from non-expanded antigen-specific T cells was achieved by the establishment of a highly sensitive PCR-based T cell receptor single cell analysis method (TCR-SCAN). Using MHC multimer-labeled and single cell-sorted HCMV-specific T cells we demonstrate a high efficacy (approximately 25%) and target specificity of TCR-SCAN receptor identification. In combination with MHC-multimer based pre-enrichment steps, we were able to isolate TCRs specific for the oncogenes Her2/neu and WT1 even from very small populations (original precursor frequencies of down to 0.00005% of CD3(+) T cells) without any cell culture step involved. Genetic re-expression of isolated receptors demonstrates their functionality and target specificity. We believe that this new strategy of TCR identification may provide broad access to specific TCRs for therapeutically relevant T cell epitopes.


Assuntos
Antígenos de Histocompatibilidade/química , Imunoterapia , Multimerização Proteica , Receptores de Antígenos de Linfócitos T/isolamento & purificação , Receptores de Antígenos de Linfócitos T/uso terapêutico , Análise de Célula Única , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/imunologia , Técnicas de Cultura de Células , Citomegalovirus/imunologia , Epitopos , Técnicas de Transferência de Genes , Células HEK293 , Antígenos de Histocompatibilidade/metabolismo , Humanos , Células Jurkat , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta , Análise de Sequência de Proteína , Especificidade da Espécie , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...