Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 95(5-1): 052135, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618583

RESUMO

The notion of negative absolute temperature emerges naturally from Boltzmann's definition of "surface" microcanonical entropy in isolated systems with a bounded energy density. Recently, the well-posedness of such construct has been challenged, on account that only the Gibbs "volume" entropy-and the strictly positive temperature thereof-would give rise to a consistent thermodynamics. Here we present analytical and numerical evidence that Boltzmann microcanonical entropy provides a consistent thermometry for both signs of the temperature. In particular, we show that Boltzmann (negative) temperature allows the description of phase transitions occurring at high energy densities, at variance with Gibbs temperature. Our results apply to nonlinear lattice models standardly employed to describe the propagation of light in arrays of coupled wave guides and the dynamics of ultracold gases trapped in optical lattices. Optically induced photonic lattices, characterized by saturable nonlinearity, are particularly appealing because they offer the possibility of observing states and phase transitions at both signs of the temperature.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021105, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928947

RESUMO

We consider correlated Lévy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a single-long-jump approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution as a function of α and of the dynamic exponent z associated with the scaling length of the process. We show that our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those pertaining to uncorrelated Lévy-walk models.

3.
Phys Rev Lett ; 100(24): 240402, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18643555

RESUMO

We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41K induces a significant loss of coherence in 87Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.

4.
Phys Rev Lett ; 98(11): 110601, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501037

RESUMO

We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e., the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point. We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 2): 016212, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17358240

RESUMO

We investigate the ground state of a system of interacting particles in small nonlinear lattices with M >or=3 sites, using as a prototypical example the discrete nonlinear Schrödinger equation that has been recently used extensively in the contexts of nonlinear optics of waveguide arrays and Bose-Einstein condensates in optical lattices. We find that, in the presence of attractive interactions, the dynamical scenario relevant to the ground-state and the lowest-energy modes of such few-site nonlinear lattices reveals a variety of nontrivial features that are absent in the large/infinite lattice limits: the single-pulse solution and the uniform solution are found to coexist in a finite range of the lattice intersite coupling where, depending on the latter, one of them represents the ground state; in addition, the single-pulse mode does not even exist beyond a critical parametric threshold. Finally, the onset of the ground-state (modulational) instability appears to be intimately connected with a nonstandard ("double transcritical") type of bifurcation that, to the best of our knowledge, has not been reported previously in other physical systems.

6.
Phys Rev Lett ; 90(5): 050404, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12633344

RESUMO

We analyze thoroughly the mean-field dynamics of a linear chain of three coupled Bose-Einstein condensates, where both the tunneling and the central-well relative depth are adjustable parameters. Owing to its nonintegrability, entailing a complex dynamics with chaos occurrence, this system is a paradigm for longer arrays whose simplicity still allows a thorough analytical study. We identify the set of dynamics fixed points, along with the associated proper modes, and establish their stability character depending on the significant parameters. As an example of the remarkable operational value of our analysis, we point out some macroscopic effects that seem viable to experiments.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(3 Pt 2A): 036121, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12366198

RESUMO

We introduce a thermal dynamics for the Ising ferromagnet where the energy variations occurring within the system exhibit a diffusive character typical of thermalizing agents such as, e.g., localized excitations. Time evolution is provided by a walker hopping across the sites of the underlying lattice according to local probabilities depending on the usual Boltzmann weight at a given temperature. Despite the canonical hopping probabilities the walker drives the system to a stationary state which is not reducible to the canonical equilibrium state in a trivial way. The system still exhibits a magnetic phase transition occurring at a finite value of the temperature larger than the canonical one. The dependence of the model on the density of walkers realizing the dynamics is also discussed. Interestingly the differences between the stationary state and the Boltzmann equilibrium state decrease with increasing number of walkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA