Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 711(1-3): 63-72, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23632394

RESUMO

While opioids are potent analgesics widely used in the management of pain, a number of well-known adverse effects limit their use. The sigma-1 receptor is a ligand-regulated molecular chaperone involved in pain processing, including modulation of opioid antinociception. However, data supporting the potential use of sigma-1 receptor ligands as suitable opioid adjuvants are based on studies that use non selective ligands. Also, safety issues derived from combination therapy are poorly addressed. In this study we used the new selective sigma-1 receptor antagonist S1RA (E-52862) to characterize the effect of selective sigma-1 receptor blockade on opioid-induced efficacy- and safety-related outcomes in mice. S1RA (40 mg/kg) had no effect in the tail-flick test but did enhance the antinociceptive potency of several opioids by a factor between 2 and 3.3. The potentiating effect of S1RA on morphine antinociception did not occur in sigma-1 receptor knockout mice, which supports the selective involvement of the sigma-1 receptor. Interestingly, S1RA co-administration restored morphine antinociception in tolerant mice and reverted the reward effects of morphine in the conditioned place preference paradigm. In addition, enhancement of antinociception was not accompanied by potentiation of other opioid-induced effects, such as the development of morphine analgesic tolerance, physical dependence, inhibition of gastrointestinal transit, or mydriasis. The use of sigma-1 receptor antagonists as opioid adjuvants could represent a promising pharmacological strategy to enhance opioid potency and, most importantly, to increase the safety margin of opioids. S1RA is currently in phase II clinical trials for the treatment of several pain conditions.


Assuntos
Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Receptores sigma/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Quimioterapia Adjuvante , Condicionamento Psicológico/efeitos dos fármacos , Sinergismo Farmacológico , Tolerância a Medicamentos , Trânsito Gastrointestinal/efeitos dos fármacos , Técnicas de Inativação de Genes , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Masculino , Camundongos , Morfina/efeitos adversos , Morfina/farmacologia , Midríase/induzido quimicamente , Naloxona/farmacologia , Receptores sigma/deficiência , Receptores sigma/genética , Recompensa , Comportamento Espacial/efeitos dos fármacos , Receptor Sigma-1
2.
Pain ; 154(1): 160-174, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23199705

RESUMO

Joint pain is a common clinical problem for which both inflammatory and degenerative joint diseases are major causes. The purpose of this study was to investigate the role of CB1 and CB2 cannabinoid receptors in the behavioral, histological, and neurochemical alterations associated with joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for CB1 (CB1KO) and CB2 cannabinoid receptors (CB2KO) and transgenic mice overexpressing CB2 receptors (CB2xP). In addition, we evaluated the changes induced by MIA in gene expression of CB1 and CB2 cannabinoid receptors and µ-, δ- and κ-opioid receptors in the lumbar spinal cord of these mice. Wild-type mice, as well as CB1KO, CB2KO, and CB2xP mice, developed mechanical allodynia in the ipsilateral paw after MIA intra-articular injection. CB1KO and CB2KO demonstrated similar levels of mechanical allodynia of that observed in wild-type mice in the ipsilateral paw, whereas allodynia was significantly attenuated in CB2xP. Interestingly, CB2KO displayed a contralateral mirror image of pain developing mechanical allodynia also in the contralateral paw. All mouse lines developed similar histological changes after MIA intra-articular injection. Nevertheless, MIA intra-articular injection produced specific changes in the expression of cannabinoid and opioid receptor genes in lumbar spinal cord sections that were further modulated by the genetic alteration of the cannabinoid receptor system. These results revealed that CB2 receptor plays a predominant role in the control of joint pain manifestations and is involved in the adaptive changes induced in the opioid system under this pain state.


Assuntos
Artralgia/fisiopatologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Artralgia/induzido quimicamente , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Injeções Intra-Articulares , Ácido Iodoacético/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptores Opioides delta/genética , Receptores Opioides kappa/genética , Receptores Opioides mu/genética , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA