Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(36): 30063-72, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22798074

RESUMO

Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1(Δ8,9) and Phr1(Magellan), with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1(Δ8,9) and Phr1(Magellan) mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1(Δ8,9) and Phr1(Magellan) mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1(Δ8,9/Mag)), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas/metabolismo , Sinapses/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Transporte/genética , Corpo Caloso/metabolismo , Drosophila , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Mutantes , Complexos Multiproteicos , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Proteínas/genética , Transdução de Sinais , Sinapses/genética , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
2.
J Biol Chem ; 286(35): 30571-30581, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21737450

RESUMO

By providing contacts between hematopoietic cells and the bone marrow microenvironment, integrins are implicated in cell adhesion and thereby in control of cell fate of normal and leukemia cells. The ASB2 gene, initially identified as a retinoic acid responsive gene and a target of the promyelocytic leukemia retinoic acid receptor α oncoprotein in acute promyelocytic leukemia cells, encodes two isoforms, a hematopoietic-type (ASB2α) and a muscle-type (ASB2ß) that are involved in hematopoietic and myogenic differentiation, respectively. ASB2α is the specificity subunit of an E3 ubiquitin ligase complex that targets filamins to proteasomal degradation. To examine the relationship of the ASB2α structure to E3 ubiquitin ligase function, functional assays and molecular modeling were performed. We show that ASB2α, through filamin A degradation, enhances adhesion of hematopoietic cells to fibronectin, the main ligand of ß1 integrins. Furthermore, we demonstrate that a short N-terminal region specific to ASB2α, together with ankyrin repeats 1 to 10, is necessary for association of ASB2α with filamin A. Importantly, the ASB2α N-terminal region comprises a 9-residue segment with predicted structural homology to the filamin-binding motifs of migfilin and ß integrins. Together, these data provide new insights into the molecular mechanisms of ASB2α binding to filamin.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Integrinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Adesão Celular , Fibronectinas/metabolismo , Células HeLa , Humanos , Camundongos , Músculos/metabolismo , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
3.
PLoS One ; 4(11): e7830, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19915675

RESUMO

Mammalian filamins (FLNs) are a family of three large actin-binding proteins. FLNa, the founding member of the family, was implicated in migration by cell biological analyses and the identification of FLNA mutations in the neuronal migration disorder periventricular heterotopia. However, recent knockout studies have questioned the relevance of FLNa to cell migration. Here we have used shRNA-mediated knockdown of FLNa, FLNb or FLNa and FLNb, or, alternatively, acute proteasomal degradation of all three FLNs, to generate FLN-deficient cells and assess their ability to migrate. We report that loss of FLNa or FLNb has little effect on migration but that knockdown of FLNa and FLNb, or proteolysis of all three FLNs, impairs migration. The observed defect is primarily a deficiency in initiation of motility rather than a problem with maintenance of locomotion speed. FLN-deficient cells are also impaired in spreading. Re-expression of full length FLNa, but not re-expression of a mutated FLNa lacking immunoglobulin domains 19 to 21, reverts both the spreading and the inhibition of initiation of migration.Our results establish a role for FLNs in cell migration and spreading and suggest that compensation by other FLNs may mask phenotypes in single knockout or knockdown cells. We propose that interactions between FLNs and transmembrane or signalling proteins, mediated at least in part by immunoglobulin domains 19 to 21 are important for both cell spreading and initiation of migration.


Assuntos
Proteínas Contráteis/fisiologia , Proteínas dos Microfilamentos/fisiologia , Actinas/química , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas Contráteis/metabolismo , Filaminas , Humanos , Imunoglobulinas/química , Células Jurkat , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Mutação , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
Mol Cell Proteomics ; 8(7): 1719-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19376791

RESUMO

The ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. As such, defects in this system can contribute to disease pathogenesis. In this pathway, E3 ubiquitin ligases provide platforms for binding specific substrates, thereby coordinating their ubiquitylation and subsequent degradation by the proteasome. Despite the identification of many E3 ubiquitin ligases, the identities of their specific substrates are still largely unresolved. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) gene that we initially identified as a retinoic acid-response gene in acute promyelocytic leukemia cells encodes the specificity subunit of an E3 ubiquitin ligase complex that is involved in hematopoietic cell differentiation. We have recently identified filamin A and filamin B as the first ASB2 targets and shown that ASB2 triggers ubiquitylation and proteasome-mediated degradation of these proteins. Here a global quantitative proteomics strategy is provided to identify substrates of E3 ubiquitin ligases targeted to proteasomal degradation. Indeed we used label-free methods for quantifying proteins identified by shotgun proteomics in extracts of cells expressing wild-type ASB2 or an E3 ubiquitin ligase-defective mutant of ASB2 under the control of an inducible promoter. Measurements of spectral count and mass spectrometric signal intensity demonstrated a drastic decrease of filamin A and filamin B in myeloid leukemia cells expressing wild-type ASB2 compared with cells expressing an E3 ubiquitin ligase-defective mutant of ASB2. Altogether we provide an original strategy that enables identification of E3 ubiquitin ligase substrates that have to be degraded.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Filaminas , Humanos , Leucemia Mieloide/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Talina/genética , Talina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...