Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2317760121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652741

RESUMO

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.


Assuntos
Decorina , Linfangiogênese , Decorina/metabolismo , Decorina/genética , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Regulação Neoplásica da Expressão Gênica
2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693608

RESUMO

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.

3.
J Exp Clin Cancer Res ; 41(1): 333, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471440

RESUMO

BACKGROUND: Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS: The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS: In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION: Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.


Assuntos
Mesotelioma , Progranulinas , Humanos , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/genética , Mesotelioma/metabolismo , Mesotelioma/patologia , Progranulinas/genética , Progranulinas/metabolismo , RNA Interferente Pequeno/genética
4.
Minerva Cardiol Angiol ; 70(3): 310-320, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100570

RESUMO

BACKGROUND: Although heart failure (HF) is one of the most common conditions affecting the heart, little attention has been placed on the role of arteries in contributing to the progression of this disease. We sought to determine the hemodynamic change of arteries in HF patients subdivided according to left ventricular ejection fraction. The major goal was to establish the active compensatory role of arteries in HF. METHODS: Using sphygmography, we systematically studied a cohort of 228 HF patients and 52 healthy controls. We focused on the common carotid as the main elastic artery and the posterior tibial as the main muscular artery. Moreover, we categorized the three HF groups, HFrEF, HFmrEF, HFpEF, into two subgroups (A and B) according to the presence or absence of HF signs at baseline. RESULTS: We discovered that all the parameters of measured arterial kinetics, i.e., work, power, acceleration, and speed, were significantly increased (P<0.001 by one-way ANOVA) in the groups without HF signs. In contrast, all the arterial kinetics parameters were significantly reduced (P<0.001) in the groups exhibiting HF signs. Similar results were obtained in both types of arteries and were consistently observed across all the three different types of HF, although with some differences in magnitude. Finally, we discovered that HFpEF patients exhibited more compromised arterial function vis-à-vis HFrEF patients. CONCLUSIONS: We provide the first documentation of an active compensatory role of arteries during HF. Mechanistically, we explain these findings by a dual activity of large arteries accomplished via an active propulsive work and a concurrent hemodynamic suction. These underestimated arterial functions partially compensate for the heart dysfunction in HF, underlining a key interplay between the heart and the vessels. We propose a new paradigm that we define as "heart and vessels failure" that explicitly focuses on both heart and vessels' interaction during the progression of HF.


Assuntos
Insuficiência Cardíaca , Artérias , Insuficiência Cardíaca/diagnóstico , Hemodinâmica , Humanos , Prognóstico , Volume Sistólico , Função Ventricular Esquerda
5.
Matrix Biol ; 100-101: 118-149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838253

RESUMO

Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.


Assuntos
Autofagia , Transdução de Sinais , Biglicano , Proteoglicanas de Sulfatos de Condroitina , Decorina/genética , Matriz Extracelular , Proteínas da Matriz Extracelular , Homeostase
6.
Cancers (Basel) ; 13(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672628

RESUMO

Breast cancer (BrCa) relies on specific microRNAs to drive disease progression. Oncogenic miR-21 is upregulated in many cancers, including BrCa, and is associated with poor survival and treatment resistance. We sought to determine the role of miR-21 in BrCa tumor initiation, progression and treatment response. In a triple-negative BrCa model, radiation exposure increased miR-21 in both primary tumor and metastases. In vitro, miR-21 knockdown decreased survival in all BrCa subtypes in the presence of radiation. The role of miR-21 in BrCa initiation was evaluated by implanting wild-type miR-21 BrCa cells into genetically engineered mouse models where miR-21 was intact, heterozygous or globally ablated. Tumors were unable to grow in the mammary fat pads of miR-21-/- mice, and grew in ~50% of miR-21+/- and 100% in miR-21+/+ mice. The contribution of miR-21 to progression and metastases was tested by crossing miR-21-/- mice with mice that spontaneously develop BrCa. The global ablation of miR-21 significantly decreased the tumorigenesis and metastases of BrCa, while sensitizing tumors to radio- and chemotherapeutic agents via Fas/FasL-dependent apoptosis. Therefore, targeting miR-21 alone or in combination with various radio or cytotoxic therapies may represent novel and efficacious therapeutic modalities for the future treatment of BrCa patients.

7.
Matrix Biol ; 95: 1-14, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065248

RESUMO

The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of ß-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.


Assuntos
Caderinas/genética , Neoplasias do Colo/tratamento farmacológico , Decorina/genética , Proteoglicanas/genética , Animais , Azoximetano/toxicidade , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Celecoxib/toxicidade , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Decorina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Humanos , Camundongos , Metástase Neoplásica , Microambiente Tumoral/efeitos dos fármacos , beta Catenina/genética
8.
J Histochem Cytochem ; 68(11): 733-746, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32623955

RESUMO

Proteoglycans are rapidly emerging as versatile regulators of intracellular catabolic pathways. This is predominantly achieved via the non-canonical induction of autophagy, a fundamentally and evolutionarily conserved eukaryotic pathway necessary for maintaining organismal homeostasis. Autophagy facilitated by either decorin, a small leucine-rich proteoglycan, or perlecan, a basement membrane heparan sulfate proteoglycan, proceeds independently of ambient nutrient conditions. We found that soluble decorin evokes endothelial cell autophagy and breast carcinoma cell mitophagy by directly interacting with vascular endothelial growth factor receptor 2 (VEGFR2) or the Met receptor tyrosine kinase, respectively. Endorepellin, a soluble, proteolytic fragment of perlecan, induces autophagy and endoplasmic reticulum stress within the vasculature, downstream of VEGFR2. These potent matrix-derived cues transduce key biological information via receptor binding to converge upon a newly discovered nexus of core autophagic machinery comprised of Peg3 (paternally expressed gene 3) for autophagy or mitostatin for mitophagy. Here, we give a mechanistic overview of the nutrient-independent, proteoglycan-driven programs utilized for autophagic or mitophagic progression. We propose that catabolic control of cell behavior is an underlying basis for proteoglycan versatility and may provide novel therapeutic targets for the treatment of human disease.


Assuntos
Autofagia , Espaço Intracelular/metabolismo , Nutrientes/metabolismo , Proteoglicanas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos
9.
Matrix Biol ; 93: 10-24, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32417448

RESUMO

The growth factor progranulin plays a critical role in bladder cancer by modulating tumor cell motility and invasion. Progranulin regulates remodeling of the actin cytoskeleton by interacting with drebrin, an actin binding protein that regulates tumor growth. We previously discovered that progranulin depletion inhibits epithelial-to-mesenchymal transition and markedly reduces in vivo tumor growth. Moreover, progranulin depletion sensitizes urothelial cancer cells to cisplatin treatment, further substantiating a pro-survival function of progranulin. Until recently, the progranulin signaling receptor remained unidentified, precluding a full understanding of progranulin action in tumor cell biology. We recently identified EphA2, a member of a large family of receptor tyrosine-kinases, as the functional receptor for progranulin. However, it is not established whether EphA2 plays an oncogenic role in bladder cancer. Here we demonstrate that progranulin, and not ephrin-A1, the canonical ligand for EphA2, is the predominant EphA2 ligand in bladder cancer. Progranulin evoked Akt- and Erk1/2-mediated EphA2 phosphorylation at Ser897, which could drive bladder tumorigenesis. We discovered that EphA2 depletion severely blunted progranulin-dependent motility and anchorage-independent growth, and sensitized bladder cancer cells to cisplatin treatment. We further defined the mechanisms of progranulin/EphA2-dependent motility by identifying liprin-α1 as a novel progranulin-dependent EphA2 interacting protein and establishing its critical role in cell motility. The discovery of EphA2 as the functional signaling receptor for progranulin and the identification of novel downstream effectors offer a new avenue for understanding the underlying mechanism of progranulin action and may constitute novel clinical and therapeutic targets in bladder cancer.


Assuntos
Progranulinas/genética , Progranulinas/metabolismo , Receptor EphA2/genética , Receptor EphA2/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Fosforilação , Receptor EphA2/química , Regulação para Cima , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
10.
J Biol Chem ; 295(18): 6064-6079, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32209654

RESUMO

Extracellular matrix-evoked angiostasis and autophagy within the tumor microenvironment represent two critical, but unconnected, functions of the small leucine-rich proteoglycan, decorin. Acting as a partial agonist of vascular endothelial growth factor 2 (VEGFR2), soluble decorin signals via the energy sensing protein, AMP-activated protein kinase (AMPK), in the autophagic degradation of intracellular vascular endothelial growth factor A (VEGFA). Here, we discovered that soluble decorin evokes intracellular catabolism of endothelial VEGFA that is mechanistically independent of mTOR, but requires an autophagic regulator, paternally expressed gene 3 (PEG3). We found that administration of autophagic inhibitors such as chloroquine or bafilomycin A1, or depletion of autophagy-related 5 (ATG5), results in accumulation of intracellular VEGFA, indicating that VEGFA is a basal autophagic substrate. Mechanistically, decorin increased the VEGFA clearance rate by augmenting autophagic flux, a process that required RAB24 member RAS oncogene family (RAB24), a small GTPase that facilitates the disposal of autophagic compartments. We validated these findings by demonstrating the physiological relevance of this process in vivo Mice starved for 48 h exhibited a sharp decrease in overall cardiac and aortic VEGFA that could be blocked by systemic chloroquine treatment. Thus, our findings reveal a unified mechanism for the metabolic control of endothelial VEGFA for autophagic clearance in response to decorin and canonical pro-autophagic stimuli. We posit that the VEGFR2/AMPK/PEG3 axis integrates the anti-angiogenic and pro-autophagic bioactivities of decorin as the molecular basis for tumorigenic suppression. These results support future therapeutic use of decorin as a next-generation protein therapy to combat cancer.


Assuntos
Autofagia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteólise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Decorina/metabolismo , Homeostase , Humanos , Espaço Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Nutrientes/deficiência , Proteínas rab de Ligação ao GTP/metabolismo
11.
Matrix Biol Plus ; 6-7: 100022, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543020

RESUMO

Bladder cancer is one of the most common and aggressive cancers and, regardless of the treatment, often recurs and metastasizes. Thus, a better understanding of the mechanisms regulating urothelial tumorigenesis is critical for the design and implementation of rational therapeutic strategies. We previously discovered that the IGF-IR axis is critical for bladder cancer cell motility and invasion, suggesting a possible role in bladder cancer progression. However, IGF-IR depletion in metastatic bladder cancer cells only partially inhibited anchorage-independent growth. Significantly, metastatic bladder cancer cells have decreased IGF-IR levels but overexpressed the insulin receptor isoform A (IR-A), suggesting that the latter may play a more prevalent role than the IGF-IR in bladder tumor progression. The collagen receptor DDR1 cross-talks with both the IGF-IR and IR in breast cancer, and previous data suggest a role of DDR1 in bladder cancer. Here, we show that DDR1 is expressed in invasive and metastatic, but not in papillary, non-invasive bladder cancer cells. DDR1 is phosphorylated upon stimulation with IGF-I, IGF-II, and insulin, co-precipitates with the IGF-IR, and the IR-A and transient DDR1 depletion severely inhibits IGF-I-induced motility. We further demonstrate that DDR1 interacts with Pyk2 and non-muscle myosin IIA in ligands-dependent fashion, suggesting that it may link the IGF-IR and IR-A to the regulation of F-actin cytoskeleton dynamics. Similarly to the IGF-IR, DDR1 is upregulated in bladder cancer tissues compared to healthy tissue controls. Thus, our findings provide the first characterization of the molecular cross-talk between DDR1 and the IGF-I system and could lead to the identification of novel targets for therapeutic intervention in bladder cancer. Moreover, the expression profiles of IGF-IR, IR-A, DDR1, and downstream effectors could serve as a novel biomarker signature with diagnostic and prognostic significance.

12.
Semin Cancer Biol ; 62: 1-8, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31078640

RESUMO

The need for more effective cancer therapies is omnipresent as the ever-complex, and highly adaptive, mechanisms of tumor biology allow this disease to elude even the most stringent treatment options. The expanding field of proteoglycan signaling is enticing as a reservoir of potential drug targets and prospects for novel therapeutic strategies. The newest trend in proteoglycan biology is the interplay between extracellular signaling and autophagy fueled by the close link between autophagy and angiogenesis. Here we summarize the most current evidence surrounding proteoglycan signaling in both of these biological processes featuring the well-known suspects, decorin and perlecan, as well as other up-and-coming neophytes in this evolving signaling web.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Proteoglicanas/metabolismo , Transdução de Sinais , Animais , Autofagia , Biomarcadores , Decorina/metabolismo , Humanos
13.
Biochem Soc Trans ; 47(5): 1543-1555, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31652436

RESUMO

The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica , Animais , Glicoproteínas/química , Glicoproteínas/fisiologia , Humanos , Proteoglicanas/fisiologia , Trombospondinas/fisiologia , Microambiente Tumoral
14.
Front Immunol ; 10: 1092, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156639

RESUMO

Chemokine receptor CXCR4, its ligand stromal cell-derived factor-1 (CXCL12) and the decoy receptor atypical chemokine receptor 3 (ACKR3, also named CXCR7), are involved in the guidance of migrating cells in different anatomical districts. Here, we investigated the role of the ACKR3 zebrafish ortholog ackr3b in the vascularization process during embryonic development. Bioinformatics and functional analyses confirmed that ackr3b is a CXCL12-binding ortholog of human ACKR3. ackr3b is transcribed in the endoderm of zebrafish embryos during epiboly and is expressed in a wide range of tissues during somitogenesis, including central nervous system and somites. Between 18 somite and 26 h-post fertilization stages, the broad somitic expression of ackr3b becomes restricted to the basal part of the somites. After ackr3b knockdown, intersomitic vessels (ISVs) lose the correct direction of migration and are characterized by the presence of aberrant sprouts and ectopic filopodia protrusions, showing downregulation of the tip/stalk cell marker hlx1. In addition, ackr3b morphants show significant alterations of lateral dorsal aortae formation. In keeping with a role for ackr3b in endothelial cell guidance, CXCL12 gradient generated by ACKR3 expression in CHO cell transfectants guides human endothelial cell migration in an in vitro cell co-culture chemotaxis assay. Our results demonstrate that ackr3b plays a non-redundant role in the guidance of sprouting endothelial cells during vascular development in zebrafish. Moreover, ACKR3 scavenging activity generates guidance cues for the directional migration of CXCR4-expressing human endothelial cells in response to CXCL12.


Assuntos
Movimento Celular/genética , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR/metabolismo , Transdução de Sinais/genética , Animais , Animais Geneticamente Modificados , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Desenvolvimento Embrionário/genética , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/genética , Receptores CXCR/genética , Transfecção , Peixe-Zebra/embriologia
15.
FEBS J ; 286(15): 2937-2949, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30974514

RESUMO

The tumor microenvironment is becoming a crucial factor in determining the aggressiveness of neoplastic cells. The glycosaminoglycan hyaluronan is one of the principal constituents of both the tumor stroma and the cancer cell surfaces, and its accumulation can dramatically influence patient survival. Hyaluronan functions are dictated by its ability to interact with several signaling receptors that often activate pro-angiogenic and pro-tumorigenic intracellular pathways. Although hyaluronan is a linear, non-sulfated polysaccharide, and thus lacks the ability of the other sulfated glycosaminoglycans to bind and modulate growth factors, it compensates for this by the ability to form hyaluronan fragments characterized by a remarkable variability in length. Here, we will focus on the role of both high and low molecular weight hyaluronan in controlling the hallmarks of cancer cells, including cell proliferation, migration, metabolism, inflammation, and angiogenesis. We will critically assess the multilayered regulation of HAS2, the most critical hyaluronan synthase, and its role in cancer growth, metabolism, and therapy.


Assuntos
Hialuronan Sintases/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Humanos , Hialuronan Sintases/genética , Neoplasias/genética
16.
Matrix Biol ; 75-76: 260-270, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080840

RESUMO

Autophagy, a fundamental and evolutionarily-conserved eukaryotic pathway, coordinates a complex balancing act for achieving both nutrient and energetic requirements for proper cellular function and homeostasis. We have discovered that soluble proteoglycans evoke autophagy in endothelial cells and mitophagy in breast carcinoma cells by directly interacting with receptor tyrosine kinases, including VEGF receptor 2 and Met. Under these circumstances, autophagic regulation is considered "non-canonical" and is epitomized by the bioactivity of the small leucine-rich proteoglycan, decorin. Soluble matrix-derived cues being transduced downstream of receptor engagement converge upon a newly-discovered nexus of autophagic machinery consisting of Peg3 for endothelial cell autophagy and mitostatin for tumor cell mitophagy. In this thematic mini-review, we will provide an overview of decorin-mediated autophagy and mitophagy and propose that regulating intracellular catabolism is the underlying molecular basis for the versatility of decorin as a potent oncosuppressive agent.


Assuntos
Autofagia/genética , Decorina/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Transporte , Humanos , Metabolismo/genética , Mitofagia/genética , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Matrix Biol ; 78-79: 118-138, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29673760

RESUMO

The malignant phenotype of various cancers is linked to enhanced expression of hyaluronan, a pro-angiogenic glycosaminoglycan whose expression is suppressed by 4-methylumbelliferone (4-MU), a non-toxic oral agent used as a dietary supplement to improve health and combat prostate cancer. In this study, we investigated the role of 4-MU in mammary carcinoma cells with distinct malignant phenotypes and estrogen receptor (ER) status, a major prognostic factor in the clinical management of breast cancers. We focused on two breast cancer cell lines, the low metastatic and ERα+ MCF-7 cells, and the highly-aggressive and ERα- MDA-MB-231 cells. Treatment with 4-MU caused a dose-dependent decrease of hyaluronan accumulation in the extracellular matrix as well as within the breast cancer cells, most prevalent in cells lacking ERα. This decrease in hyaluronan was accompanied by suppression of Hyaluronan Synthase 2 (HAS2), the major enzyme responsible for the synthesis of hyaluronan, and by induction of hyaluronidases (HYALs) -1 and -2. Moreover, 4-MU induced intense phenotypic changes and substantial loss of CD44, a major hyaluronan receptor, from cell protrusions. Importantly, 4-MU evoked differential effects depending on the absence or presence of ERα. Only the ERα+ cells showed signs of apoptosis, as determined by cleaved PARP-1, and anoikis as shown by concurrent loss of E-cadherin and ß-catenin. Interestingly, 4-MU significantly reduced migration, adhesion and invasion of ERα- breast cancer cells, and concurrently reduced the expression and activity of several matrix degrading enzymes and pro-inflammatory molecules with tumor-promoting functions. Collectively, our findings suggest that 4-MU could represent a novel therapeutic for specific breast cancer subtypes with regard to their ER status via suppression of hyaluronan synthesis and regulation of HAS2, CD44, matrix-degrading enzymes and inflammatory mediators.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo
18.
Methods Mol Biol ; 1806: 121-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956273

RESUMO

Progranulin has emerged in recent years as an important regulator of various biological functions including cell proliferation, wound healing, motility, and protection from apoptosis. Progranulin is also critical for transformation as established in several cancer models.Progranulin biological responses elicit through the activation of the Akt and MAPK pathways, which are critical for progranulin downstream signaling.In this chapter various experimental approaches aiming at detecting progranulin-mediated Akt and MAPK activation will be discussed.


Assuntos
Bioquímica/métodos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Progranulinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anticorpos/metabolismo , Ativação Enzimática , Humanos , Immunoblotting , Sistema de Sinalização das MAP Quinases , Fosforilação , Coloração e Rotulagem
19.
Matrix Biol ; 64: 27-39, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28433812

RESUMO

Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Comunicação Autócrina , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Progranulinas , Neoplasias de Próstata Resistentes à Castração/genética , Transporte Proteico , Proteólise , Transcrição Gênica , Ubiquitinação
20.
J Cell Biol ; 215(5): 687-703, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27903606

RESUMO

Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptor EphA2/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Capilares/metabolismo , Membrana Celular/metabolismo , Ativação Enzimática , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese , Progranulinas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...