Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 39(15): 3665-72, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20354619

RESUMO

The iminophosphine 2-(2-Ph(2)P)C(6)H(4)N=CHC(6)H(4)OH (P-N-OH) reacts with [Pd(mu-Cl)(eta(3)-C(3)H(5))](2) yielding [PdCl(P-N-O)] and propene. In the presence of NEt(3), the reaction of P-N-OH with [Pd(mu-Cl)(eta(3)-1-R(1),3-R(2)C(3)H(3))](2) (R(1) = R(2) = H, Ph; R(1) = H, R(2) = Ph) affords the eta(1)-allyl derivatives [Pd(eta(1)-1-R(1),3-R(2)C(3)H(3))](P-N-O)] (R(1) = R(2) = H: 1; R(1) = H, R(2) = Ph: 2; R(1) = R(2) = Ph: 3). In solution, the complexes 1 and 3 undergo a slow dynamic process which interconverts the bonding site of the allyl ligand. The X-ray structural analysis of 1 indicates a square-planar coordination geometry around the palladium centre with a P,N,O,-tridentate ligand and a sigma bonded allyl group. The complexes [PdR(P-N-O)] (R = C(6)H(4)Me-4, C[triple bond]CPh) react slowly with p-bromoanisole in the presence of p-tolylboronic acid to give [PdBr(P-N-O)] and the coupling product RC(6)H(4)OMe-4. The latter reactions also proceed at a low rate under catalytic conditions. The coupling of allyl bromide with p-tolylboronic acid is catalyzed by [PdCl(P-N-O)]/K(2)CO(3) to give 4-allyltoluene.

2.
Chem Biodivers ; 4(6): 1299-312, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17589867

RESUMO

Alamethicin (Alm) is one of the most extensively studied membrane-active antibiotic peptides, but several aspects of its mechanism of action are still under debate. In this study, synthetic analogues of natural Alm F50/5 (Alm-N), labeled with a 9H-fluoren-9-yl group at the N- (F-Alm) or C-terminus (Alm-F), were employed to investigate the position and orientation of this peptide in the membrane environment. Depth-dependent fluorescence quenching and polarized ATR-FT-IR experiments demonstrated that, in the absence of a transmembrane potential, Alm inserts its N-terminus into the membrane, while the C-terminus is exposed to the outer aqueous phase. We also found that the peptaibol populates different orientations with respect to the membrane normal. Furthermore, fluorescence resonance-energy transfer (FRET) indicated that no peptide translocation to the inner leaflet of lipid bilayers occurs. The mechanism of action of Alm is discussed on the basis of these findings. Two other Alm analogues, Alm-P and Alm-S, were exploited to investigate the role of specific Alm residues in terms of membrane-perturbing activity. Substitution of two or three Gln (E) residues (the only polar amino acids in the alamethicin sequence) by gamma-methyl glutamate (Glu(OMe)) residues induced marked variations in the aggregation and partition behaviors of the peptaibols, which, in turn, modulate their membrane activity. In particular, substitution of Gln(18) and Gln(19) caused a six-fold increase in membrane-perturbing activity, thus demonstrating that these residues are not essential for the stabilization of Alm pores.


Assuntos
Alameticina/química , Lipídeos de Membrana/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sequência de Aminoácidos , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...