Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1782, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245558

RESUMO

The heart coordinates its functional parameters for optimal beat-to-beat mechanical activity. Reliable detection and quantification of these parameters still represent a hot topic in cardiovascular research. Nowadays, computer vision allows the development of open-source algorithms to measure cellular kinematics. However, the analysis software can vary based on analyzed specimens. In this study, we compared different software performances in in-silico model, in-vitro mouse adult ventricular cardiomyocytes and cardioids. We acquired in-vitro high-resolution videos during suprathreshold stimulation at 0.5-1-2 Hz, adapting the protocol for the cardioids. Moreover, we exposed the samples to inotropic and depolarizing substances. We analyzed in-silico and in-vitro videos by (i) MUSCLEMOTION, the gold standard among open-source software; (ii) CONTRACTIONWAVE, a recently developed tracking software; and (iii) ViKiE, an in-house customized video kinematic evaluation software. We enriched the study with three machine-learning algorithms to test the robustness of the motion-tracking approaches. Our results revealed that all software produced comparable estimations of cardiac mechanical parameters. For instance, in cardioids, beat duration measurements at 0.5 Hz were 1053.58 ms (MUSCLEMOTION), 1043.59 ms (CONTRACTIONWAVE), and 937.11 ms (ViKiE). ViKiE exhibited higher sensitivity in exposed samples due to its localized kinematic analysis, while MUSCLEMOTION and CONTRACTIONWAVE offered temporal correlation, combining global assessment with time-efficient analysis. Finally, machine learning reveals greater accuracy when trained with MUSCLEMOTION dataset in comparison with the other software (accuracy > 83%). In conclusion, our findings provide valuable insights for the accurate selection and integration of software tools into the kinematic analysis pipeline, tailored to the experimental protocol.


Assuntos
Algoritmos , Software , Camundongos , Animais , Fenômenos Biomecânicos , Miócitos Cardíacos/fisiologia , Aprendizado de Máquina
2.
Front Cardiovasc Med ; 10: 1216917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408655

RESUMO

Background: Reliable biomarkers for assessing the viability of the donor hearts undergoing ex vivo perfusion remain elusive. A unique feature of normothermic ex vivo perfusion on the TransMedics® Organ Care System (OCS™) is that the donor heart is maintained in a beating state throughout the preservation period. We applied a video algorithm for an in vivo assessment of cardiac kinematics, video kinematic evaluation (Vi.Ki.E.), to the donor hearts undergoing ex vivo perfusion on the OCS™ to assess the feasibility of applying this algorithm in this setting. Methods: Healthy donor porcine hearts (n = 6) were procured from Yucatan pigs and underwent 2 h of normothermic ex vivo perfusion on the OCS™ device. During the preservation period, serial high-resolution videos were captured at 30 frames per second. Using Vi.Ki.E., we assessed the force, energy, contractility, and trajectory parameters of each heart. Results: There were no significant changes in any of the measured parameters of the heart on the OCS™ device over time as judged by linear regression analysis. Importantly, there were no significant changes in contractility during the duration of the preservation period (time 0-30 min, 918 ± 430 px/s; time 31-60 min, 1,386 ± 603 px/s; time 61-90 min, 1,299 ± 617 px/s; time 91-120 min, 1,535 ± 728 px/s). Similarly, there were no significant changes in the force, energy, or trajectory parameters. Post-transplantation echocardiograms demonstrated robust contractility of each allograft. Conclusion: Vi.Ki.E. assessment of the donor hearts undergoing ex vivo perfusion is feasible on the TransMedics OCS™, and we observed that the donor hearts maintain steady kinematic measurements throughout the duration.

3.
Macromol Biosci ; 23(7): e2300019, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37059590

RESUMO

For tissue engineering of skeletal muscles, there is a need for biomaterials which do not only allow cell attachment, proliferation, and differentiation, but also support the physiological conditions of the tissue. Next to the chemical nature and structure of the biomaterial, its response to the application of biophysical stimuli, such as mechanical deformation or application of electrical pulses, can impact in vitro tissue culture. In this study, gelatin methacryloyl (GelMA) is modified with hydrophilic 2-acryloxyethyltrimethylammonium chloride (AETA) and 3-sulfopropyl acrylate potassium (SPA) ionic comonomers to obtain a piezoionic hydrogel. Rheology, mass swelling, gel fraction, and mechanical characteristics are determined. The piezoionic properties of the SPA and AETA-modified GelMA are confirmed by a significant increase in ionic conductivity and an electrical response as a function of mechanical stress. Murine myoblasts display a viability of >95% after 1 week on the piezoionic hydrogels, confirming their biocompatibility. The GelMA modifications do not influence the fusion capacity of the seeded myoblasts or myotube width after myotube formation. These results describe a novel functionalization providing new possibilities to exploit piezo-effects in the tissue engineering field.


Assuntos
Gelatina , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/farmacologia , Gelatina/química , Sobrevivência Celular , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Metacrilatos/farmacologia , Metacrilatos/química , Alicerces Teciduais/química
4.
Front Bioeng Biotechnol ; 10: 892287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814025

RESUMO

Skeletal muscle tissue engineering (SMTE) aims at the in vitro generation of 3D skeletal muscle engineered constructs which mimic the native muscle structure and function. Although native skeletal muscle is a highly dynamic tissue, most research approaches still focus on static cell culture methods, while research on stimulation protocols indicates a positive effect, especially on myogenesis. A more mature muscle construct may be needed especially for the potential applications for regenerative medicine purposes, disease or drug disposition models. Most efforts towards dynamic cell or tissue culture methods have been geared towards mechanical or electrical stimulation or a combination of those. In the context of dynamic methods, pulsed electromagnetic field (PEMF) stimulation has been extensively used in bone tissue engineering, but the impact of PEMF on skeletal muscle development is poorly explored. Here, we evaluated the effects of PEMF stimulation on human skeletal muscle cells both in 2D and 3D experiments. First, PEMF was applied on 2D cultures of human myoblasts during differentiation. In 2D, enhanced myogenesis was observed, as evidenced by an increased myotube diameter and fusion index. Second, 2D results were translated towards 3D bioartificial muscles (BAMs). BAMs were subjected to PEMF for varying exposure times, where a 2-h daily stimulation was found to be effective in enhancing 3D myotube formation. Third, applying this protocol for the entire 16-days culture period was compared to a stimulation starting at day 8, once the myotubes were formed. The latter was found to result in significantly higher myotube diameter, fusion index, and increased myosin heavy chain 1 expression. This work shows the potential of electromagnetic stimulation for enhancing myotube formation both in 2D and 3D, warranting its further consideration in dynamic culturing techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...