Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(3): 1623-1638, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32076539

RESUMO

Contact zones occur at the crossroad between specific dispersal routes and are facilitated by biogeographic discontinuities. Here, we focused on two Lepidoptera sister species that come in contact near the Turkish Straits System (TSS). We aimed to infer their phylogeographic histories in the Eastern Mediterranean and finely analyze their co-occurrence and hybridization patterns in this biogeographic context. We used molecular mitochondrial and nuclear markers to study 224 individuals from 42 localities. We used discordances between markers and complementary assignment methods to identify and map hybrids and parental individuals. We confirmed the parapatric distribution of Thaumetopoea pityocampa (Lepidoptera: Notodontidae) in the west and Thaumetopoea wilkinsoni in the east and identified a narrow contact zone. We identified several glacial refugia of T. wilkinsoni in southern Turkey with a strong east-west differentiation in this species. Unexpectedly, T. pityocampa crossed the TSS and occur in northern Aegean Turkey and some eastern Greek islands. We found robust evidence of introgression between the two species in a restricted zone in northwestern Turkey, but we did not identify any F1 individuals. The identified hybrid zone was mostly bimodal. The distributions and genetic patterns of the studied species were strongly influenced both by the Quaternary climatic oscillations and the complex geological history of the Aegean region. T. pityocampa and T. wilkinsoni survived the last glacial maximum in disjoint refugia and met in western Turkey at the edge of the recolonization routes. Expanding population of T. wilkinsoni constrained T. pityocampa to the western Turkish shore. Additionally, we found evidence of recurrent introgression by T. wilkinsoni males in several T. pityocampa populations. Our results suggest that some prezygotic isolation mechanisms, such as differences in timing of the adult emergences, might be a driver of the isolation between the sister species.

2.
Insect Sci ; 24(2): 325-335, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26530538

RESUMO

Phenology allows organisms to overcome seasonally variable conditions through life-cycle adjustment. Changes in phenology can drastically modify the evolutionary trajectory of a population, while a shift in the reproductive time may cause allochronic differentiation. The hypothesis of heritable reproductive time was experimentally tested, by studying a unique population of the pine processionary moth Thaumetopoea pityocampa (Den. & Schiff.) which has a shifted phenology, and however co-occurs with the typical population following the classical life cycle. When populations of both types were reared under controlled conditions, the reproductive time was maintained asynchronous, as observed in the field. The shifted population was manipulated in the laboratory to reproduce later than usual, yet the offspring emerged in the next year at the expected dates thus "coming back" to the usual cycle. Hybrids from crosses performed between the 2 populations showed an intermediate phenology. From the emergence times of parents and offspring, a high heritability of the reproductive time (h = 0.76) was observed. The offspring obtained from each type of cross was genetically characterized using microsatellite markers. Bayesian clustering analysis confirmed that hybrids can be successfully identified and separated from the parental genetic classes by genotyping. Findings support the hypothesis that, for this particular population, incipient allochronic speciation is due to a heritable shift in the reproductive time that further causes assortative mating and might eventually cause ecological adaptation/maladaptation in response to environmental changes.


Assuntos
Mariposas/genética , Animais , Teorema de Bayes , Feminino , Especiação Genética , Hibridização Genética , Masculino , Repetições de Microssatélites , Mariposas/fisiologia , Reprodução/fisiologia , Estações do Ano , Fatores de Tempo
3.
Ecol Evol ; 6(13): 4274-88, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27386074

RESUMO

The pine processionary moth (Thaumetopoea pityocampa) is an important pest of coniferous forests at the southern edge of its range in Maghreb. Based on mitochondrial markers, a strong genetic differentiation was previously found in this species between western (pityocampa clade) and eastern Maghreb populations (ENA clade), with the contact zone between the clades located in Algeria. We focused on the moth range in Algeria, using both mitochondrial (a 648 bp fragment of the tRNA-cox2) and nuclear (11 microsatellite loci) markers. A further analysis using a shorter mtDNA fragment and the same microsatellite loci was carried out on a transect in the contact zone between the mitochondrial clades. Mitochondrial diversity showed a strong geographical structure and a well-defined contact zone between the two clades. In particular, in the pityocampa clade, two inner subclades were found whereas ENA did not show any further structure. Microsatellite analysis outlined a different pattern of differentiation, with two main groups not overlapping with the mitochondrial clades. The inconsistency between mitochondrial and nuclear markers is probably explained by sex-biased dispersal and recent afforestation efforts that have bridged isolated populations.

4.
BMC Genomics ; 16: 112, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25765701

RESUMO

BACKGROUND: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS: The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION: In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética , Transcriptoma/genética , Sequência de Bases , Mapeamento Cromossômico , Especiação Genética , Genoma de Planta , Quercus/genética , Quercus/crescimento & desenvolvimento , Análise de Sequência de RNA
5.
Insect Biochem Mol Biol ; 46: 31-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24468684

RESUMO

The pine processionary moth Thaumetopoea pityocampa is a Mediterranean lepidopteran defoliator that experiences a rapid range expansion towards higher latitudes and altitudes due to the current climate warming. Its phenology - the time of sexual reproduction - is certainly a key trait for the local adaptation of the processionary moth to climatic conditions. Moreover, an exceptional case of allochronic differentiation was discovered ca. 15 years ago in this species. A population with a shifted phenology (the summer population, SP) co-exists near Leiria, Portugal, with a population following the classical cycle (the winter population, WP). The existence of this population is an outstanding opportunity to decipher the genetic bases of phenology. No genomic resources were so far available for T. pityocampa. We developed a high-throughput sequencing approach to build a first reference transcriptome, and to proceed with comparative analyses of the sympatric SP and WP. We pooled RNA extracted from whole individuals of various developmental stages, and performed a transcriptome characterisation for both populations combining Roche 454-FLX and traditional Sanger data. The obtained sequences were clustered into ca. 12,000 transcripts corresponding to 9265 unigenes. The mean transcript coverage was 21.9 reads per bp. Almost 70% of the de novo assembled transcripts displayed significant similarity to previously published proteins and around 50% of the transcripts contained a full-length coding region. Comparative analyses of the population transcriptomes allowed to investigate genes specifically expressed in one of the studied populations only, and to identify the most divergent homologous SP/WP transcripts. The most divergent pairs of transcripts did not correspond to obvious phenology-related candidate genes, and 43% could not be functionally annotated. This study provides the first comprehensive genome-wide resource for the target species T. pityocampa. Many of the assembled genes are orthologs of published Lepidoptera genes, which allows carrying out gene-specific re-sequencing. Data mining has allowed the identification of SNP loci that will be useful for population genomic approaches and genome-wide scans of population differentiation to identify signatures of selection.


Assuntos
Mariposas/genética , Transcriptoma , Animais , Dados de Sequência Molecular , Mariposas/metabolismo , Estações do Ano , Análise de Sequência de DNA
6.
PLoS One ; 8(2): e57192, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460830

RESUMO

The genus Thaumetopoea contains the processionary moths, a group of lepidopteran associated with forest trees, well known for the social behaviour of the larvae and for carrying urticating setae. The taxonomy of the genus is partly unresolved and a phylogenetic approach is lacking. The goal of this work is to produce a phylogeny for Thaumetopoea and to identify the main traits driving the evolution of this group. Eighteen mitochondrial and three nuclear genes were fully/partly sequenced. Markers were aligned and analysed singularly or in various combinations. Phylogenetic analyses were performed according to maximum likelihood and Bayesian inference methods. Trees obtained from largest data sets provided identical topologies that received strong statistical support. Three main clades were identified within Thaumetopoea and were further supported by several signatures located in the mitochondrial tRNAs and intergenic spacers. The reference topology was used to investigate the evolution of life history traits related to biogeography, host plant, ecology, and morphology. A multigenic approach allowed to produce a robust phylogenetic analysis of the genus Thaumetopoea, with the identification of three major clades linked to different ecological and life history traits. The first clade is associated with Angiosperm host plants and has a fast spring development of larvae on young foliage. The other clades have originated by one event of host plant shift to Gymnosperm Pinaceae, which implied a longer larval developmental time due to the lower nutritional quality of leaves. These clades showed different adaptations to such a constraint, the first with a switch of larval feeding to cold season (winter pine processionary moths), and the second with a retraction to high altitude and latitude and a development cycle extended over two years (summer pine processionary moths). Recent global warming is affecting all species and seems able to further shape the evolution of the group.


Assuntos
Evolução Biológica , Especificidade de Hospedeiro/genética , Mariposas/genética , Mariposas/fisiologia , Comportamento Social , Animais , Sequência de Bases , DNA Intergênico/genética , DNA Mitocondrial/genética , Genes de Insetos/genética , Mitocôndrias , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência/química , RNA de Transferência/genética
7.
PLoS One ; 7(5): e36882, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629338

RESUMO

Scaphoideus titanus, a leafhopper native to North America and invasive in Europe, is the vector of the Flavescence dorée phytoplasma, the causal agent of the most important form of grapevine yellows in European vineyards. We studied 10 polymorphic microsatellite loci and a 623 bp fragment of the mitochondrial cytochrome oxidase II gene in native S. titanus from north-eastern America and introduced European populations, to elucidate the colonization scenario. Consistent with their recent history, invasive European populations were less genetically diverse than American populations for both types of markers, suggesting a recent bottleneck. Significant isolation by distance was detected between American populations but not between European populations. None of the European mitochondrial haplotypes was found in the American vineyards, from which they are assumed to have originated. The precise source of the invasive S. titanus populations therefore remains unclear. Nevertheless, the high heterozygosity of North-East American populations (which contained 92% of the observed alleles) suggests that this region is part of the native range of S. titanus. Clustering population genetics analyses with microsatellite and mitochondrial data suggested that European populations originated from a single introduction event. Most of the introduced populations clustered with populations from Long Island, the Atlantic Coast winegrowing region in which Vitis aestivalis occurs.


Assuntos
Hemípteros/genética , Repetições de Microssatélites , Mitocôndrias/genética , Animais , Europa (Continente) , Loci Gênicos , Variação Genética , Genética Populacional , Haplótipos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...