Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Percept Mot Skills ; : 315125241256688, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805403

RESUMO

Reacting and responding to an external stimulus is an important component of human performance, and they inform us about a participant's neurophysiological capabilities. Our purpose in this study was to determine whether reaction times (REACT), response times (RT), and countermovement jump (CMJ) performance differ when responding to an auditory (AUD) versus visual (VIS) stimulus. Participants were 17 college-aged volunteers (6 females and 11 males; M age = 23.0, SD = 3.4 years; M height = 174.57, SD = 10.37 cm; M body mass = 73.37, SD = 13.48 kg). Participants performed CMJs on force plates immediately upon receiving an AUD or a VIS stimulus. The AUD stimulus was a beep noise, while the VIS stimulus was a light on a screen in front of the participants. We determined REACT for the tibialis anterior (TA), medial gastrocnemius (GM), vastus lateralis (VL), and biceps femoris (BF) muscles to be the amount of time between stimulus onset and the initiation of the muscle's electromyographic (EMG) signal. We determined RT to be the amount of time between stimulus onset and the beginning of the participant's force production. We assessed CMJ performance via ground reaction forces during the unweighting, braking, and propulsive phases of the jump. We quantified EMG amplitude and frequency during each CMJ phase. We found RT to be faster to the AUD versus the VIS stimulus (p = .007). VL and BF muscles had faster REACT than TA and GM muscles (p ≤ .007). The AUD stimulus was associated with faster CMJ unweighting phase metrics (p ≤ .005). Thus, individuals may react and respond faster to an AUD versus VIS stimulus, with limited improvements in their subsequent physical performance.

2.
J Strength Cond Res ; 38(3): e86-e95, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088878

RESUMO

ABSTRACT: Gillen, ZM, Burch, RF, Saucier, DN, Strawderman, L, Luczak, T, Piroli, A, Petway, AJ, and Rath, T. Effects of a strength and conditioning offseason program on countermovement jump ground reaction forces in Division I American football players. J Strength Cond Res 38(3): e86-e95, 2024-The purpose of this study was to examine the effects of a 10-week strength and conditioning offseason program on the ground reaction forces (GRFs) of American football players during single-leg and double-leg countermovement jumps (SLJ and CMJ, respectively). Each subject visited the laboratory twice, once for preoffseason and once for postoffseason testing. During each visit, subjects performed CMJs and SLJs for each leg. Ground reaction forces were collected by force plates to quantify unweighting, braking, propulsive, and performance metrics for each jump. In addition, an efficiency index was calculated for each jump to examine changes in vertical jump efficiency. Dependent samples t tests compared all CMJ metrics. Two-way repeated measures analyses of variance (leg × time) compared all SLJ metrics. An alpha level of p ≤ 0.05 was considered statistically significant. For the CMJ, propulsive phase duration decreased due to the program ( p = 0.007), whereas peak braking power, peak propulsive power, mean propulsive force, and jump height increased ( p ≤ 0.012). For the SLJ, peak braking power, force at the low position, braking rate of force development, eccentric force, peak propulsive power, mean propulsive force, and jump height increased in both legs ( p ≤ 0.044). The efficiency index increased for the CMJ and the SLJ for both legs ( p ≤ 0.016). This study demonstrated that SLJ and CMJ vertical jump performance significantly increases in as few as 10 weeks of offseason strength and conditioning. Strength and conditioning programming may effectively increase vertical jump performance, as assessed by GRFs, which can be used as a simple indicator regarding changes in athletic performance.


Assuntos
Desempenho Atlético , Futebol Americano , Humanos , Força Muscular , Perna (Membro)
3.
Saf Health Work ; 14(3): 303-308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37818213

RESUMO

Background: Occupational workers at altitudes are more prone to falls, leading to catastrophic outcomes. Acrophobia, height-related anxiety, and affected executive functions lead to postural instabilities, causing falls. This study investigated the effects of repeated virtual height exposure and training on cognitive processing and height-related anxiety. Methods: Twenty-eight healthy volunteers (age 20.48 ± 1.26 years; mass 69.52 ± 13.78 kg) were recruited and tested in seven virtual environments (VE) [ground (G), 2-story altitude (A1), 2-story edge (E1), 4-story altitude (A2), 4-story edge (E2), 6-story altitude (A3), and 6-story edge (E3)] over three days. At each VE, participants identified occupational hazards present in the VE and completed an Attitude Towards Heights Questionnaire (ATHQ) and a modified State-Trait Anxiety Inventory Questionnaire (mSTAIQ). The number of hazards identified and the ATHQ and mSTAIQ scores were analyzed using a 7 (VE; G, A1, A2, A3, E1, E2, E3) x 3 (DAY; DAY 1, DAY 2, DAY 3) factorial repeated measures analysis of variance. Results: The participants identified the lowest number of hazards at A3 and E3 VEs and on DAY 1 compared to other VEs and DAYs. ATHQ scores were lowest at G, A1, and E1 VEs. Conclusion: Cognitive processing is negatively affected by virtual altitudes, while it improves with short-term training. The features of virtual reality, such as higher involvement, engagement, and reliability, make it a better training tool to be considered in ergonomic settings. The findings of this study will provide insights into cognitive dual-tasking at altitude and its challenges, which will aid in minimizing occupational falls.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36673958

RESUMO

The Star Excursion Balance Test (SEBT) is a common assessment used across clinical and research settings to test dynamic standing balance. The primary measure of this test is maximal reaching distance performed by the non-stance limb. Response time (RT) is a critical cognitive component of dynamic balance control and the faster the RT, the better the postural control and recovery from a postural perturbation. However, the measure of RT has not been done in conjunction with SEBT, especially with musculoskeletal fatigue. The purpose of this study is to examine RT during a SEBT, creating a modified SEBT (mSEBT), with a secondary goal to examine the effects of muscular fatigue on RT during SEBT. Sixteen healthy young male and female adults [age: 20 ± 1 years; height: 169.48 ± 8.2 cm; weight: 67.93 ± 12.7 kg] performed the mSEBT in five directions for three trials, after which the same was repeated with a response time task using Blazepod™ with a random stimulus. Participants then performed a low-intensity musculoskeletal fatigue task and completed the above measures again. A 2 × 2 × 3 repeated measures ANOVA was performed to test for differences in mean response time across trials, fatigue states, and leg reach as within-subjects factors. All statistical analyses were conducted in JASP at an alpha level of 0.05. RT was significantly faster over the course of testing regardless of reach leg or fatigue state (p = 0.023). Trial 3 demonstrated significantly lower RT compared to Trial 1 (p = 0.021). No significant differences were found between fatigue states or leg reach. These results indicate that response times during the mSEBT with RT is a learned skill that can improve over time. Future research should include an extended familiarization period to remove learning effects and a greater fatigue state to test for differences in RT during the mSEBT.


Assuntos
, Equilíbrio Postural , Adulto , Humanos , Masculino , Feminino , Adulto Jovem , Tempo de Reação , Equilíbrio Postural/fisiologia , Fadiga , Cognição
5.
Wearable Technol ; 4: e4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487777

RESUMO

The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot-ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R-squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot-ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system.

6.
Healthcare (Basel) ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35885797

RESUMO

Compression socks are used by a very diverse group of individuals and may potentially have a greater impact on physically diminished or impaired individuals as opposed to healthy individuals. The purpose of this study was to compare the effects of sub-clinical (SC) and clinical (CL) compression socks among healthy (CON), copers (COP), and individuals with chronic ankle instability (CAI). Postural stability was evaluated in 20 participants (11 males and 9 females) using Balance Tracking System Balance platform (BTrackS™) during the modified clinical test of sensory integration in balance (mCTSIB) and limits of stability (LOS) tests. Postural sway parameters were analyzed using a mixed model repeated measures analysis of variance 3 (group: CON, COP, and CAI) by 3 (compression condition: BF, SC, and CL) × 4 (balance condition: EO, EC, EOF, and ECF) for mCTSIB and a 3 (group: CON, COP, and CAI) by 3 (compression condition: BF, SC, CL) × 4 (balance condition: FL, BL, BR, FR) for LOS. Results revealed significantly greater postural stability with both SC and CL compression socks when compared to barefoot conditions. However, no significant differences were observed among groups for compression socks grades. Both SC and CL compression socks may be effective in increasing postural stability.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35681957

RESUMO

The purpose of this study is to compare masks (non-medical/fabric, surgical, and N95 respirators) on filtration efficiency, differential pressure, and leakage with the goal of providing evidence to improve public health messaging. Masks were tested on an anthropometric face filtration mount, comparing both sealed and unsealed. Overall, surgical and N95 respirators provided significantly higher filtration efficiency (FE) and differential pressure (dP). Leakage comparisons are one of the most significant factors in mask efficiency. Higher weight and thicker fabric masks had significantly higher filtration efficiency. The findings of this study have important implications for communication and education regarding the use of masks to prevent the spread of COVID-19 and other respiratory illnesses, specifically the differences between sealed and unsealed masks. The type and fabric of facial masks and whether a mask is sealed or unsealed has a significant impact on the effectiveness of a mask. Findings related to differences between sealed and unsealed masks are of critical importance for health care workers. If a mask is not completely sealed around the edges of the wearer, FE for this personal protective equipment is misrepresented and may create a false sense of security. These results can inform efforts to educate health care workers and the public on the importance of proper mask fit.


Assuntos
COVID-19 , Dispositivos de Proteção Respiratória , COVID-19/prevenção & controle , Humanos , Máscaras , Equipamento de Proteção Individual , Saúde Pública , Têxteis
8.
Bioengineering (Basel) ; 9(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35049742

RESUMO

Wearable technologies are emerging as a useful tool with many different applications. While these devices are worn on the human body and can capture numerous data types, this literature review focuses specifically on wearable use for performance enhancement and risk assessment in industrial- and sports-related biomechanical applications. Wearable devices such as exoskeletons, inertial measurement units (IMUs), force sensors, and surface electromyography (EMG) were identified as key technologies that can be used to aid health and safety professionals, ergonomists, and human factors practitioners improve user performance and monitor risk. IMU-based solutions were the most used wearable types in both sectors. Industry largely used biomechanical wearables to assess tasks and risks wholistically, which sports often considered the individual components of movement and performance. Availability, cost, and adoption remain common limitation issues across both sports and industrial applications.

9.
Front Immunol ; 12: 757811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745131

RESUMO

Induction of broadly neutralizing antibodies (bNAbs) is a major goal for HIV vaccine development. HIV envelope glycoprotein (Env)-specific bNAbs isolated from HIV-infected individuals exhibit substantial somatic hypermutation and correlate with T follicular helper (Tfh) responses. Using the VC10014 DNA-protein co-immunization vaccine platform consisting of gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject that developed bNAbs, we determined the characteristics of the Env-specific humoral response in vaccinated rhesus macaques in the context of CD4+ T cell depletion. Unexpectedly, both CD4+ depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. There was no deficit in protection from SHIV challenge, no diminution of titers of HIV Env-specific cross-clade binding antibodies, antibody dependent cellular phagocytosis, or antibody-dependent complement deposition in the CD4+ depleted animals. These collective results suggest that in the presence of diminished CD4+ T cell help, HIV neutralizing antibodies were still generated, which may have implications for developing effective HIV vaccine strategies.


Assuntos
Vacinas contra a AIDS , Anticorpos Amplamente Neutralizantes/biossíntese , Anticorpos Anti-HIV/biossíntese , Macaca mulatta/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Reações Cruzadas , Feminino , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/imunologia , HIV-1/imunologia , Imunização Secundária , Masculino , Fagocitose , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Desenvolvimento de Vacinas , Vacinas Sintéticas , Carga Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-33924707

RESUMO

Research surrounding the mandated use of non-medical fabric masks is inconsistent and often confusing when compared to the standard N95. A recently published standard from ASTM International and the Centers for Disease Control and Prevention attempts to normalize evaluation procedures. The purpose of this study is to conduct a preliminary evaluation of the new methods for testing filtration efficiency of masks outlined by ASTM International F3502, where results can be directly compared to standards outlined for non-medical fabric masks. Eleven consumer non-medical fabric masks were tested for filtration efficiency and airflow resistance using a face filtration mount in accordance with the newly released ASTM International standard for facial barriers. The mean FE% (SD) ranged from 0.46% (0.44) to 11.80% (2.76) with the 3-layer athletic mesh having the highest performance and the highest deviations. All the masks tested following the procedure failed to meet to minimum FE of 20%; however all masks performed below the minimum upper limits for airflow resistance. Using a non-medical fabric masks as the sole mitigation strategy may not be as effective, as previously reported. With efforts to standardize and regulate the non-medical fabric mask market, this study demonstrates a variety of currently available consumer mask products do not meet the minimum standards nor are these remotely close to the standards of surgical or N95 masks.


Assuntos
Filtração , Têxteis
11.
Cell Rep Med ; 2(3): 100218, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33649747

RESUMO

SARS-CoV-2 infection results in viral burden in the respiratory tract, enabling transmission and leading to substantial lung pathology. The 1212C2 fully human monoclonal antibody was derived from an IgM memory B cell of a COVID-19 patient, has high affinity for the Spike protein receptor binding domain, neutralizes SARS-CoV-2, and exhibits in vivo prophylactic and therapeutic activity in hamsters when delivered intraperitoneally, reducing upper and lower respiratory viral burden and lung pathology. Inhalation of nebulized 1212C2 at levels as low as 0.6 mg/kg, corresponding to 0.03 mg/kg lung-deposited dose, reduced the viral burden below the detection limit and mitigated lung pathology. The therapeutic efficacy of an exceedingly low dose of inhaled 1212C2 supports the rationale for local lung delivery for dose-sparing benefits, as compared to the conventional parenteral route of administration. These results suggest that the clinical development of 1212C2 formulated and delivered via inhalation for the treatment of SARS-CoV-2 infection should be considered.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Administração por Inalação , Animais , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/imunologia , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina M/imunologia , Masculino , Células B de Memória/citologia , Células B de Memória/metabolismo , Pessoa de Meia-Idade , Testes de Neutralização , Filogenia , Domínios Proteicos/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32438649

RESUMO

Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance, and for fall detection. Wearable stretch sensors are increasingly being used for human movement monitoring. Additionally, falls are one of the leading causes of both fatal and nonfatal injuries in the workplace. The use of wearable technology in the workplace could be a successful solution for human movement monitoring and fall detection, especially for high fall-risk occupations. This paper provides an in-depth review of different wearable stretch sensors and summarizes the need for wearable technology in the field of ergonomics and the current wearable devices used for fall detection. Additionally, the paper proposes the use of soft-robotic-stretch (SRS) sensors for human movement monitoring and fall detection. This paper also recapitulates the findings of a series of five published manuscripts from ongoing research that are published as Parts I to V of "Closing the Wearable Gap" journal articles that discuss the design and development of a foot and ankle wearable device using SRS sensors that can be used for fall detection. The use of SRS sensors in fall detection, its current limitations, and challenges for adoption in human factors and ergonomics are also discussed.


Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Local de Trabalho , Acidentes por Quedas/prevenção & controle , Ergonomia , Humanos , Movimento
13.
Sensors (Basel) ; 19(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405180

RESUMO

The linearity of soft robotic sensors (SRS) was recently validated for movement angle assessment using a rigid body structure that accurately depicted critical movements of the foot-ankle complex. The purpose of this study was to continue the validation of SRS for joint angle movement capture on 10 participants (five male and five female) performing ankle movements in a non-weight bearing, high-seated, sitting position. The four basic ankle movements-plantar flexion (PF), dorsiflexion (DF), inversion (INV), and eversion (EVR)-were assessed individually in order to select good placement and orientation configurations (POCs) for four SRS positioned to capture each movement type. PF, INV, and EVR each had three POCs identified based on bony landmarks of the foot and ankle while the DF location was only tested for one POC. Each participant wore a specialized compression sock where the SRS could be consistently tested from all POCs for each participant. The movement data collected from each sensor was then compared against 3D motion capture data. R-squared and root-mean-squared error averages were used to assess relative and absolute measures of fit to motion capture output. Participant robustness, opposing movements, and gender were also used to identify good SRS POC placement for foot-ankle movement capture.


Assuntos
Articulação do Tornozelo/fisiologia , Articulações do Pé/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Movimento/fisiologia , Adulto Jovem
14.
Appl Ergon ; 51: 273-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26154226

RESUMO

The increasing number of handheld mobile devices used today and the increasing dependency on them in the workplace makes understanding how users interact with these devices critical. This study seeks to understand how user error changes based on user age as well as input content type on ruggedized handheld devices. Participants completed data entry tasks of word and character input on two different devices, a physical keypad and touchscreen device. The number of errors and types of error, corrected and permanent were collected for each participant. Based on results on the study, touchscreen devices proved to be the optimal ruggedized handheld device to minimize user error.


Assuntos
Periféricos de Computador/estatística & dados numéricos , Computadores de Mão/estatística & dados numéricos , Interface Usuário-Computador , Adulto , Fatores Etários , Idoso , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...