Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563126

RESUMO

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.

2.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36214847

RESUMO

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.


Assuntos
Centrossomo , Células Dendríticas , Pontos de Checagem do Ciclo Celular , Movimento Celular , Centrossomo/metabolismo , Quimiotaxia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Centro Organizador dos Microtúbulos , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/metabolismo
3.
Front Immunol ; 12: 765034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721436

RESUMO

The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.


Assuntos
Inflamação/imunologia , Receptor de Manose/imunologia , Receptores de Superfície Celular/imunologia , Biomarcadores , Humanos
4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326259

RESUMO

Proinflammatory activation of macrophages in metabolic tissues is critically important in the induction of obesity-induced metaflammation. Here, we demonstrate that the soluble mannose receptor (sMR) plays a direct functional role in both macrophage activation and metaflammation. We show that sMR binds CD45 on macrophages and inhibits its phosphatase activity, leading to an Src/Akt/NF-κB-mediated cellular reprogramming toward an inflammatory phenotype both in vitro and in vivo. Remarkably, increased serum sMR levels were observed in obese mice and humans and directly correlated with body weight. Importantly, enhanced sMR levels increase serum proinflammatory cytokines, activate tissue macrophages, and promote insulin resistance. Altogether, our results reveal sMR as regulator of proinflammatory macrophage activation, which could constitute a therapeutic target for metaflammation and other hyperinflammatory diseases.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor de Manose/química , Proteínas de Membrana/farmacologia , Ração Animal , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal , Inflamação , Ativação de Macrófagos/fisiologia , Masculino , Receptor de Manose/metabolismo , Camundongos , Camundongos Knockout , Distribuição Aleatória
5.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847079

RESUMO

Macrophages (MΦ) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8+, XCR1+, CLEC9A+, BDCA3+ conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8+ T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studied in the past decades. Biophysical and biochemical fingerprints of tumor micromilieus show significant spatiotemporal differences in comparison to non-neoplastic tissue. In tumors, low pH (mainly due to extracellular lactate accumulation via the Warburg effect and via glutaminolysis) and high oncotic and osmotic pressure (resulting from tumor debris, increased extracellular matrix components but in part also triggered by nutritive aspects) are-despite fluctuations and difficulties in measurement-likely the most constant general hallmarks of tumor microenvironment. Here, we focus on the influence of acidic and hypertonic micromilieu on the capacity of DCs to cross-present tumor-specific antigens. We discuss complex and in part controversial scientific data on the interference of these factors with to date reported mechanisms of antigen uptake, processing and cross-presentation, and we highlight their potential role in cancer immune escape and poor clinical response to DC vaccines.

6.
Int J Nanomedicine ; 14: 3503-3516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190807

RESUMO

Purpose: The NLRP3 inflammasome activation has been proposed as a common mechanism for some adjuvants to boost the immune system, and cationic liposomes were reported to potentially activate the NLRP3 inflammasome. Herein, we questioned whether the NLRP3 inflammasome-activating cationic liposomes could promote antigen presentation and be applied as an immune adjuvant. In addition, we aimed to investigate the structure effect of lipid on triggering these immune responses. Materials and methods: A series of structurally similar lipids, consisting of arginine (Arg) head group and varied lengths of alkyl chains or spacers in between were used to prepare cationic liposomes. Lipopolysaccharide-primed human or murine macrophages or phorbol 12-myristate 13-acetate-primed THP-1 cells were treated with these liposomes, and interleukin (IL)-1ß secretion was measured to quantify the NLRP3 inflammasome activation. Lysosome rupture was examined in THP-1 cells by the fluorescence loss of acridine orange, a lysosome dye. Further, chicken ovalbumin (OVA) was loaded on the liposome surface and applied to murine bone marrow-derived dendritic cells (BMDCs), which activate OT-I and OT-II lymphocytes upon major histocompatibility complex (MHC) class I- and class II-mediated antigen presentation, respectively. OT-I and OT-II cell division and IL-2 secretion were measured to evaluate the antigen presentation efficiency. The expressions of MHC molecules and co-stimulatory molecules ie, CD80, CD86, and CD40 on BMDCs were investigated by flow cytometry. Results: All the liposomes showed size distributions of 80-200 nm and zeta potentials of around 50 mV. A3C14 liposomes, consisting of Arg-C3-Glu2C14 lipids induced the most potent lysosome rupture and NLRP3 inflammasome activation. OVA-A3C14 also exhibited the most potent MHC class I- and class II-mediated antigen presentation in BMDCs without interfering MHC and co-stimulatory molecules. Conclusion: The hydrophobic moieties of arginine-based liposomes are crucial in stimulating innate immune cells. A3C14 liposomes were non-immunogenic but strongly activated innate immune cells and promoted antigen presentation, and therefore can be applied as immune adjuvants.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Arginina/farmacologia , Células Dendríticas/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Cátions , Células Dendríticas/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade/metabolismo , Humanos , Lipídeos/química , Lipopolissacarídeos/farmacologia , Lipossomos , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
7.
Methods Mol Biol ; 1988: 249-257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147944

RESUMO

Antigen-presenting cells (APCs), especially macrophages and dendritic cells (DCs), are important for the induction of an adaptive immune response through their phagocytic capacity. APCs internalize extracellular antigens and, dependent on their intracellular localization, antigen-derived peptides are presented on MHC I or MHC II molecules. In context of antigen presentation and T cell activation tracking of internalized antigens is of high interest. In this article, we provide an immunofluorescence protocol and illustrate the analysis of intracellular routing of internalized antigens using the example of the model-antigen ovalbumin (OVA) in bone marrow-derived dendritic cells (BM-DCs). This protocol describes a procedure to stain such cells with an antibody against EEA-1, a marker for early endosomes, which can be easily adapted to other endosome markers, antigen-presenting cells, or antigens.


Assuntos
Antígenos/metabolismo , Endocitose , Espaço Intracelular/metabolismo , Microscopia de Fluorescência/métodos , Animais , Células da Medula Óssea/citologia , Análise de Dados , Células Dendríticas/metabolismo , Camundongos
8.
Front Immunol ; 9: 1643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061897

RESUMO

Dendritic cells have the ability to efficiently present internalized antigens on major histocompatibility complex (MHC) I molecules. This process is termed cross-presentation and is important role in the generation of an immune response against viruses and tumors, after vaccinations or in the induction of immune tolerance. The molecular mechanisms enabling cross-presentation have been topic of intense debate since many years. However, a clear view on these mechanisms remains difficult, partially due to important remaining questions, controversial results and discussions. Here, we give an overview of the current concepts of antigen cross-presentation and focus on a description of the major cross-presentation pathways, the role of retarded antigen degradation for efficient cross-presentation, the dislocation of antigens from endosomal compartment into the cytosol, the reverse transport of proteasome-derived peptides for loading on MHC I and the translocation of the cross-presentation machinery from the ER to endosomes. We try to highlight recent advances, discuss some of the controversial data and point out some of the major open questions in the field.

9.
Immunity ; 47(6): 1051-1066.e12, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262348

RESUMO

Human in vitro generated monocyte-derived dendritic cells (moDCs) and macrophages are used clinically, e.g., to induce immunity against cancer. However, their physiological counterparts, ontogeny, transcriptional regulation, and heterogeneity remains largely unknown, hampering their clinical use. High-dimensional techniques were used to elucidate transcriptional, phenotypic, and functional differences between human in vivo and in vitro generated mononuclear phagocytes to facilitate their full potential in the clinic. We demonstrate that monocytes differentiated by macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF) resembled in vivo inflammatory macrophages, while moDCs resembled in vivo inflammatory DCs. Moreover, differentiated monocytes presented with profound transcriptomic, phenotypic, and functional differences. Monocytes integrated GM-CSF and IL-4 stimulation combinatorically and temporally, resulting in a mode- and time-dependent differentiation relying on NCOR2. Finally, moDCs are phenotypically heterogeneous and therefore necessitate the use of high-dimensional phenotyping to open new possibilities for better clinical tailoring of these cellular therapies.


Assuntos
Células Dendríticas/imunologia , Interleucina-4/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Correpressor 2 de Receptor Nuclear/imunologia , Transdução de Sinais/imunologia , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imunofenotipagem , Interleucina-4/genética , Interleucina-4/farmacologia , Ativação de Macrófagos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Correpressor 2 de Receptor Nuclear/genética , Cultura Primária de Células , Fatores de Tempo , Transcrição Gênica
10.
Sci Rep ; 7(1): 311, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28331179

RESUMO

Tissue osmolarity varies among different organs and can be considerably increased under pathologic conditions. Hyperosmolarity has been associated with altered stimulatory properties of immune cells, especially macrophages and dendritic cells. We have recently reported that dendritic cells upon exposure to hypertonic stimuli shift their profile towards a macrophage-M2-like phenotype, resulting in attenuated local alloreactivity during acute kidney graft rejection. Here, we examined how hyperosmotic microenvironment affects the cross-priming capacity of dendritic cells. Using ovalbumin as model antigen, we showed that exposure of dendritic cells to hyperosmolarity strongly inhibits activation of antigen-specific T cells despite enhancement of antigen uptake, processing and presentation. We identified TRIF as key mediator of this phenomenon. Moreover, we detected a hyperosmolarity-triggered, TRIF-dependent clustering of MHCI loaded with the ovalbumin-derived epitope, but not of overall MHCI molecules, providing a possible explanation for a reduced T cell activation. Our findings identify dendritic cells as important players in hyperosmolarity-mediated immune imbalance and provide evidence for a novel pathway of inhibition of antigen specific CD8+ T cell response in a hypertonic micromilieu.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apresentação Cruzada , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Pressão Osmótica , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia
11.
Oncotarget ; 8(4): 6857-6872, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28036287

RESUMO

N-glycosylation is generally accepted to enhance the immunogenicity of antigens because of two main reasons. First, the attachment of glycans enables recognition by endocytic receptors like the mannose receptor (MR) and hence increased uptake by dendritic cells (DCs). Second, foreign glycans are postulated to be immunostimulatory and their recognition could induce DC activation. However, a direct comparison between the immunogenicity of N-glycosylated vs. de-glycosylated proteins in vivo and a direct effect of N-glycosylated antigens on the intrinsic capacity of DCs to activate T cells have not been assessed so far.To analyze whether enforced N-glycosylation is a suited strategy to enhance the immunogenicity of non-glycosylated antigens for vaccination studies, we targeted non-glycoproteins towards the MR by introduction of artificial N-glycosylation using the methylotrophic yeast Komagataella phaffii (previously termed Pichia pastoris). We could demonstrate that the introduction of a single N-X-S/T motif was sufficient for efficient MR-binding and internalization. However, addition of N-glycosylated proteins neither influenced DC maturation nor their general capacity to activate T cells, pointing out that enforced N-glycosylation does not increase the immunogenicity of the antigen per se. Additionally, increased antigen-specific cytotoxic T cell responses in vivo after injection of N-glycosylated compared to de-glycosylated proteins were observed but this effect strongly depended on the epitope tested. A beneficial effect of N-glycosylation on antibody production could not be detected, which might be due to MR-cross-linking on DCs and to concomitant differences in IL-6 production by CD4+ T cells.These observations point out that the effect of N-glycosylation on antigen immunogenicity can vary between different antigens and therefore might have important implications for the development of vaccines using K. phaffii.


Assuntos
Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Lectinas de Ligação a Manose/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Linfócitos T/metabolismo , beta-Galactosidase/metabolismo , Animais , Comunicação Celular , Proliferação de Células , Técnicas de Cocultura , Citocinas/metabolismo , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Epitopos , Glicosilação , Células HEK293 , Humanos , Imunogenicidade da Vacina , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Ligantes , Receptor de Manose , Lectinas de Ligação a Manose/deficiência , Lectinas de Ligação a Manose/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Ovalbumina/metabolismo , Pichia/genética , Pichia/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Linfócitos T/imunologia , Fatores de Tempo , Transfecção , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/imunologia
12.
Proc Natl Acad Sci U S A ; 113(38): 10649-54, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601670

RESUMO

The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.


Assuntos
Antígeno CTLA-4/genética , Lectinas Tipo C/genética , Antígenos Comuns de Leucócito/genética , Ativação Linfocitária/genética , Lectinas de Ligação a Manose/genética , Receptores de Superfície Celular/genética , Animais , Apresentação de Antígeno/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/imunologia , Regulação da Expressão Gênica/genética , Humanos , Tolerância Imunológica/genética , Lectinas Tipo C/imunologia , Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores de Superfície Celular/imunologia , Linfócitos T Citotóxicos/imunologia , Ativação Transcricional/genética
13.
Kidney Int ; 89(1): 82-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26466317

RESUMO

Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.


Assuntos
Microambiente Celular , Células Dendríticas/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Fenótipo , Animais , Células da Medula Óssea , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Rejeição de Enxerto/patologia , Homeostase , Imunidade Celular/genética , Imunidade Celular/imunologia , Transplante de Rim , Contagem de Leucócitos , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Concentração Osmolar , Receptores de Superfície Celular/metabolismo , Cloreto de Sódio/farmacologia , Transcriptoma
15.
Immunity ; 42(5): 850-63, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25979419

RESUMO

The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER.


Assuntos
Antígenos/metabolismo , Linfócitos T CD8-Positivos , Apresentação Cruzada/imunologia , Citosol/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Animais , Antígenos/imunologia , Linhagem Celular , Citosol/imunologia , Proteínas de Membrana/química , Camundongos , Transporte Proteico , Canais de Translocação SEC
16.
PLoS One ; 9(8): e103755, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25137039

RESUMO

The use of synthetic long peptides (SLP) has been proven to be a promising approach to induce adaptive immune responses in vaccination strategies. Here, we analyzed whether the efficiency to activate cytotoxic T cells by SLP-based vaccinations can be increased by conjugating SLPs to mannose residues. We could demonstrate that mannosylation of SLPs results in increased internalization by the mannose receptor (MR) on murine antigen-presenting cells. MR-mediated internalization targeted the mannosylated SLPs into early endosomes, from where they were cross-presented very efficiently compared to non-mannosylated SLPs. The influence of SLP mannosylation was specific for cross-presentation, as no influence on MHC II-restricted presentation was observed. Additionally, we showed that vaccination of mice with mannosylated SLPs containing epitopes from either ovalbumin or HPV E7 resulted in enhanced proliferation and activation of antigen-specific CD8+ T cells. These findings demonstrate that mannosylation of SLPs augments the induction of a cytotoxic T cell response in vitro and in vivo and might be a promising approach to induce cytotoxic T cell responses in e.g. cancer therapy and anti-viral immunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Apresentação Cruzada , Imunidade Celular/efeitos dos fármacos , Manose/imunologia , Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos/citologia , Antígenos/química , Proliferação de Células , Galinhas , Endossomos/imunologia , Endossomos/metabolismo , Expressão Gênica , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Manose/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Ovalbumina/química , Ovalbumina/imunologia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Peptídeos/administração & dosagem , Peptídeos/síntese química , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Alinhamento de Sequência , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/metabolismo
17.
Basic Res Cardiol ; 109(4): 425, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24980781

RESUMO

Ischemic heart disease is associated with inflammation, interstitial fibrosis and ventricular dysfunction prior to the development of heart failure. Endocannabinoids and the cannabinoid receptor CB2 have been claimed to be involved, but their potential role in cardioprotection is not well understood. We therefore explored the role of the cannabinoid receptor CB2 during the initial phase of ischemic cardiomyopathy development prior to the onset of ventricular dysfunction or infarction. Wild type and CB2-deficient mice underwent daily brief, repetitive ischemia and reperfusion (I/R) episodes leading to ischemic cardiomyopathy. The relevance of the endocannabinoid-CB2 receptor axis was underscored by the finding that CB2 was upregulated in ischemic wild type cardiomyocytes and that anandamide level was transiently increased during I/R. CB2-deficient mice showed an increased rate of apoptosis, irreversible loss of cardiomyocytes and persistent left ventricular dysfunction 60 days after the injury, whereas wild type mice presented neither morphological nor functional defects. These defects were due to lack of cardiomyocyte protection mechanisms, as CB2-deficient hearts were in contrast to controls unable to induce switch in myosin heavy chain isoforms, antioxidative enzymes and chemokine CCL2 during repetitive I/R. In addition, a prolonged inflammatory response and adverse myocardial remodeling were found in CB2-deficient hearts because of postponed activation of the M2a macrophage subpopulation. Therefore, the endocannabinoid-CB2 receptor axis plays a key role in cardioprotection during the initial phase of ischemic cardiomyopathy development.


Assuntos
Cardiomiopatias/prevenção & controle , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais , Animais , Apoptose , Ácidos Araquidônicos/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Feminino , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB2 de Canabinoide/deficiência , Receptor CB2 de Canabinoide/genética , Fatores de Tempo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular
18.
Curr Opin Immunol ; 26: 63-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24556402

RESUMO

The efficiency of antigen cross-presentation, which is the presentation of extracellular antigens on MHC I molecules, critically depends on the stability of the internalized antigens. Since rapid degradation within the lysosomal compartment impairs cross-presentation, potent cross-presenting cells display several mechanisms to prevent activation of lysosomal proteases. Additionally, distinct endocytic receptors can target internalized antigens towards non-degradative early endosomes, from where efficient cross-presentation can occur. From these endosomes, antigens need to be processed for loading on MHC I molecules, which can occur by endo/lysosomal proteases or after translocation into the cytosol by the proteasome. Although the underlying mechanisms require further investigations, increasing evidence points out a decisive role of the ER-associated degradation machinery in such antigen translocation.


Assuntos
Apresentação Cruzada/imunologia , Endossomos/imunologia , Endossomos/metabolismo , Animais , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Endocitose/imunologia , Endossomos/patologia , Espaço Extracelular/imunologia , Espaço Extracelular/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Necrose , Estabilidade Proteica , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo
19.
J Biol Chem ; 289(11): 7919-28, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24505139

RESUMO

The Maillard reaction (also referred to as "glycation") takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: N(ε)-carboxymethyl lysine (CM-OVA), N(ε)-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4(+) T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4(+) T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens.


Assuntos
Alérgenos/química , Linfócitos T CD4-Positivos/citologia , Hipersensibilidade Alimentar/imunologia , Norleucina/análogos & derivados , Ovalbumina/química , Pirróis/química , Animais , Células da Medula Óssea/citologia , Carboidratos/química , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Ativação Linfocitária , Reação de Maillard , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Norleucina/química , Estrutura Secundária de Proteína , Receptores Depuradores/química
20.
PLoS One ; 8(11): e79571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244525

RESUMO

Processing and presentation of antigen on MHC-I class I molecules serves to present peptides derived from cytosolic proteins to CD8(+) T cells. Infection with bacteria that remain in phagosomal compartments, such as Mycobacterium tuberculosis (Mtb), provides a challenge to this immune recognition as bacterial proteins are segregated from the cytosol. Previously we identified the Mtb phagosome itself as an organelle capable of loading MHC Class I molecules with Mtb antigens. Here, we find that the TAP transporter, responsible for importing peptides into the ER for loading in Class I molecules, is both present and functional in Mtb phagosomes. Furthermore, we describe a novel peptide reagent, representing the N-terminal domain of the bovine herpes virus UL49.5 protein, which is capable of specifically inhibiting the lumenal face of TAP. Together, these results provide insight into the mechanism by which peptides from intra-phagosomal pathogens are loaded onto Class I molecules.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptídeos/metabolismo , Fagossomos/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Camundongos , Mycobacterium tuberculosis/imunologia , Peptídeos/imunologia , Peptídeos/farmacologia , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...