Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 47(10): 5183-5193, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32757280

RESUMO

PURPOSE: X-ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer-sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory-sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). METHODS: A specially made beam collimation optic allows to increase x-ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. RESULTS: We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 µm slit size and 350 µm center-to-center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak-to-valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. CONCLUSIONS: This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.


Assuntos
Radiometria , Terapia por Raios X , Animais , Camundongos , Método de Monte Carlo , Síncrotrons , Raios X
2.
Radiat Environ Biophys ; 59(1): 111-120, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655869

RESUMO

Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.


Assuntos
Neoplasias/radioterapia , Síncrotrons , Animais , Linhagem Celular Tumoral , Feminino , Histonas/metabolismo , Humanos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Raios X
3.
Sci Rep ; 8(1): 15700, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356116

RESUMO

With the introduction of screening mammography, the mortality rate of breast cancer has been reduced throughout the last decades. However, many women undergo unnecessary subsequent examinations due to inconclusive diagnoses from mammography. Two pathways appear especially promising to reduce the number of false-positive diagnoses. In a clinical study, mammography using synchrotron radiation was able to clarify the diagnosis in the majority of inconclusive cases. The second highly valued approach focuses on the application of phase-sensitive techniques such as grating-based phase-contrast and dark-field imaging. Feasibility studies have demonstrated a promising enhancement of diagnostic content, but suffer from dose concerns. Here we present dose-compatible grating-based phase-contrast and dark-field images as well as conventional absorption images acquired with monochromatic x-rays from a compact synchrotron source based on inverse Compton scattering. Images of freshly dissected mastectomy specimens show improved diagnostic content over ex-vivo clinical mammography images at lower or equal dose. We demonstrate increased contrast-to-noise ratio for monochromatic over clinical images for a well-defined phantom. Compact synchrotron sources could potentially serve as a clinical second level examination.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/instrumentação , Mamografia/métodos , Mastectomia , Síncrotrons , Neoplasias da Mama/cirurgia , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Imagens de Fantasmas , Doses de Radiação , Tolerância a Radiação , Raios X
4.
PLoS One ; 12(10): e0186005, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049300

RESUMO

X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the translation of this promising radiotherapy technique to a machine of future clinical relevance. We performed in vitro colony-forming assays and chromosome aberration tests in normal tissue cells after microbeam irradiation compared to homogeneous irradiation at the same mean dose using 25 keV X-rays. The microplanar pattern was achieved with a tungsten slit array of 50 µm slit size and a spacing of 350 µm. Applying microbeams significantly increased cell survival for a mean dose above 2 Gy, which indicates fewer normal tissue complications. The observation of significantly less chromosome aberrations suggests a lower risk of second cancer development. Our findings provide valuable insight into the mechanisms of microbeam radiotherapy and prove its applicability at a compact synchrotron, which contributes to its future clinical translation.


Assuntos
Sobrevivência Celular , Aberrações Cromossômicas/efeitos da radiação , Síncrotrons , Animais , Células CHO , Cricetulus , Células HeLa , Humanos , Raios X
5.
BMC Plant Biol ; 16(1): 187, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27576474

RESUMO

BACKGROUND: Within onion, Allium cepa L., the availability of disease resistance is limited. The identification of sources of resistance in related species, such as Allium roylei and Allium fistulosum, was a first step towards the improvement of onion cultivars by breeding. SNP markers linked to resistance and polymorphic between these related species and onion cultivars are a valuable tool to efficiently introgress disease resistance genes. In this paper we describe the identification and validation of SNP markers valuable for onion breeding. RESULTS: Transcriptome sequencing resulted in 192 million RNA seq reads from the interspecific F1 hybrid between A. roylei and A. fistulosum (RF) and nine onion cultivars. After assembly, reliable SNPs were discovered in about 36 % of the contigs. For genotyping of the interspecific three-way cross population, derived from a cross between an onion cultivar and the RF (CCxRF), 1100 SNPs that are polymorphic in RF and monomorphic in the onion cultivars (RF SNPs) were selected for the development of KASP assays. A molecular linkage map based on 667 RF-SNP markers was constructed for CCxRF. In addition, KASP assays were developed for 1600 onion-SNPs (SNPs polymorphic among onion cultivars). A second linkage map was constructed for an F2 of onion x A. roylei (F2(CxR)) that consisted of 182 onion-SNPs and 119 RF-SNPs, and 76 previously mapped markers. Markers co-segregating in both the F2(CxR) and the CCxRF population were used to assign the linkage groups of RF to onion chromosomes. To validate usefulness of these SNP markers, QTL mapping was applied in the CCxRF population that segregates for resistance to Botrytis squamosa and resulted in a QTL for resistance on chromosome 6 of A. roylei. CONCLUSIONS: Our research has more than doubled the publicly available marker sequences of expressed onion genes and two onion-related species. It resulted in a detailed genetic map for the interspecific CCxRF population. This is the first paper that reports the detection of a QTL for resistance to B. squamosa in A. roylei.


Assuntos
Cebolas/genética , Polimorfismo de Nucleotídeo Único , Allium/genética , Allium/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Hibridização Genética , Cebolas/fisiologia
6.
Opt Express ; 22(26): 32107-18, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25607176

RESUMO

Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.


Assuntos
Algoritmos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Difração de Raios X/métodos , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Theor Appl Genet ; 122(5): 947-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21222096

RESUMO

The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R') and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R' was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars.


Assuntos
Micorrizas/crescimento & desenvolvimento , Cebolas/crescimento & desenvolvimento , Cebolas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Simbiose , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Biomassa , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Genótipo , Glomeromycota/crescimento & desenvolvimento , Cebolas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Locos de Características Quantitativas , Solo/análise
8.
Mycorrhiza ; 19(5): 317-328, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19301039

RESUMO

Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions, namely, Zeeland and Flevoland. In 2005, nine conventional and ten organic fields were additionally surveyed in Flevoland. AMF phylotypes were identified by rDNA sequencing. All plants were colonized, with 60% for arbuscular colonization and 84% for hyphal colonization as grand means. In Zeeland, onion roots from organic fields had higher fractional colonization levels than those from conventional fields. Onion yields in conventional farming were positively correlated with colonization level. Overall, 14 AMF phylotypes were identified. The number of phylotypes per field ranged from one to six. Two phylotypes associated with the Glomus mosseae-coronatum and the G. caledonium-geosporum species complexes were the most abundant, whereas other phylotypes were infrequently found. Organic and conventional farming systems had similar number of phylotypes per field and Shannon diversity indices. A few organic and conventional fields had larger number of phylotypes, including phylotypes associated with the genera Glomus-B, Archaeospora, and Paraglomus. This suggests that farming systems as such did not influence AMF diversity, but rather specific environmental conditions or agricultural practices.


Assuntos
Agricultura , Biodiversidade , Glomeromycota/isolamento & purificação , Micorrizas/isolamento & purificação , Cebolas/microbiologia , Raízes de Plantas/microbiologia , Agricultura/métodos , DNA Fúngico/genética , DNA Ribossômico/genética , Glomeromycota/classificação , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Micorrizas/classificação , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Países Baixos , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...